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Abstract of the Dissertation

Combustion and Magnetohydrodynamic Processes

in Advanced Pulse Detonation Rocket Engines

by

Lord Kahil Cole

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2012

Professor Ann Karagozian, Chair

A number of promising alternative rocket propulsion concepts have been devel-

oped over the past two decades that take advantage of unsteady combustion waves

in order to produce thrust. These concepts include the Pulse Detonation Rocket En-

gine (PDRE), in which repetitive ignition, propagation, and reflection of detonations

and shocks can create a high pressure chamber from which gases may be exhausted

in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrody-

namic Ejector (PDRIME) is a modification of the basic PDRE concept, developed

by Cambier (1998), which has the potential for performance improvements based

on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the ad-

vantage of both low combustion chamber seeding pressure, per the PDRE concept,

and efficient energy distribution in the system, per the rocket-induced MHD ejector

(RIME) concept of Cole, et al. (1995).

In the initial part of this thesis, we explore flow and performance characteristics of

different configurations of the PDRIME, assuming quasi-one-dimensional transient

ii



flow and global representations of the effects of MHD phenomena on the gas dy-

namics. By utilizing high-order accurate solvers, we thus are able to investigate the

fundamental physical processes associated with the PDRIME and PDRE concepts

and identify potentially promising operating regimes.

In the second part of this investigation, the detailed coupling of detonations and

electric and magnetic fields are explored. First, a one-dimensional spark-ignited det-

onation with complex reaction kinetics is fully evaluated and the mechanisms for

the different instabilities are analyzed. It is found that complex kinetics in addition

to sufficient spatial resolution are required to be able to quantify high frequency as

well as low frequency detonation instability modes. Armed with this quantitative

understanding, we then examine the interaction of a propagating detonation and

the applied MHD, both in one-dimensional and two-dimensional transient simula-

tions. The dynamics of the detonation are found to be affected by the application of

magnetic and electric fields. We find that the regularity of one-dimensional cesium-

seeded detonations can be significantly altered by reasonable applied magnetic fields

(Bz ≤ 8T ), but that it takes a stronger applied field (Bz > 16T ) to significantly alter

the cellular structure and detonation velocity of a two-dimensional detonation in the

time in which these phenomena were observed. This observation is likely attributed

to the additional coupling of the two-dimensional detonation with the transverse

waves, which are not captured in the one-dimensional simulations. Future studies

involving full ionization kinetics including collisional-radiative processes, will be used

to examine these processes in further detail.
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CHAPTER 1

Introduction

1.1 Background on Detonation Engine Concepts

The chemical rocket can be considered the oldest technical development in jet propul-

sion. In a solid propellant rocket, for example, the exit plane momentum is due to

the flow of a hot gas created by the rapid burning of solid fuel composed of a mixture

of a fuel and oxidizer. Gun powder emerged in China around AD 850 as the result

of accidental discovery by Chinese alchemist. For centuries after this discover, little

was done in the advancement of rocket propulsion, until in 1903, a Russian school

teacher by the name of Konstantin Tsolikowsky[1] published the paper ‘The Investi-

gation of Outer Space by Means of Reaction Apparatus”. In this paper, Tsolikowsky

postulated that man could escape the clutches of earth’s gravity with rockets. His

calculations led him to the idea of multi-staging. Subsequently, he went on to dis-

cuss the use of liquid oxygen and liquid hydrogen for those purposes. Piggy-backing

off of these ideas, the American physicist, Robert Goddard, designed constant pres-

sure rocket combustion chamber nozzles and propellant feed systems. Goddard[2]

went on to lead the advancement of liquid fueled rockets and in 1919 published, “A

Method of Reaching Extreme Altitudes”, which not only provided the mathematical

analysis for achieving high altitudes, but also to reach the moon. He devoted much
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of his effort to thrust chamber development and to the turbo-machinery needed for

pumping the liquid propellants [3].

Still today, almost a century later, the modern aerospace community finds itself

facing the same challenges as the founding fathers of modern rocketry. These chal-

lenges include, but are not limited to, developing lighter and more efficient propulsion

systems and more efficient multi-staging techniques. The present studies focus on

exploring potential rocket propulsion systems that take advantage of magnetohydro-

dynamics(MHD) phenomena.

In 1998, Dr. Jean-Luc Cambier proposed a novel combined cycle propulsive con-

cept, the Pulse Detonation Rocket-Induced Magnetohydrodynamic Ejector (PDRIME)[4].

The PDRIME is one of many MHD thrust augmentation ideas that shows promise

for application in advanced propulsion systems. Taking advantage of the unsteady

wave engine concept of the constant volume Pulse Detonation Engine (PDE), the

PDRIME utilizes temporal periodic energy divergence into a seeded air stream, then

MHD acceleration for thrust augmentation. Because of the nature of the unsteady

waves in the PDE, the PDRIME does not need heavy turbo-machinery to pump

liquid propellants. With the elimination of heavy turbo-machinery, paired with the

energy augmentation of the MHD accelerator in the bypass air stream, the PDRIME

could potentially be able to achieve the velocities necessary for Single-Stage-to-Orbit

(SSTO) flight, thus breaking with the expensive tradition of complicated, expensive

multistage propulsive systems.

Another concept developed by Cambier in [5] is the ‘Magnetic Piston’. This

concept involves energy extraction from the expansion portion of the nozzle, energy

reintroduction into the combustion chamber, followed by acceleration of the com-
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bustion products from the combustion chamber. The ‘Magnetic Piston’ builds upon

the PDE and the PDRIME, but also gains some advantages of traditional constant

pressure rocket propulsion systems. These and other alternative rocket propulsion

concepts will be explored in this dissertation. The present chapter provides the

technical background for these concepts.

1.1.1 Engine Impulse and Efficiency

Before we can compare the properties and advantages of various propulsion systems,

we must first have a quantitative means of expressing various properties. Impulse

and efficiency are the properties we are most interested in. Impulse is defined as the

integral of thrust, F , over a given time period:

I ≡
∫ t

0

F(τ)dτ (1.1)

Efficiency in a propulsion system is quantified by the specific impulse, Isp, which is

defined as Isp ≡ I
Mpg

, where Mpg is the weight of the propellant used. A typical

rocket engine uses a converging-diverging (Laval) nozzle to convert high pressure

and temperature propellant into thrust. The larger the area ratio (AR), ratio of

nozzle exit area to nozzle throat area, of the nozzle the faster the exit velocity of the

propellant, ue, and lower the exit pressure, Pe. The thrust generated by rockets is

typically expressed as:

F = ṁue + (Pe − Patm)Ae (1.2)

where ṁ is the mass flux of gas exiting the nozzle and Ae is the area of the nozzle

exit plane. For optimal thrust, Pe is equal to the ambient pressure, Patm, when this

is achieved, a nozzle is said to be ‘perfectly’ expanded. When traveling in altitudes

which range from sea level to the edge of space (the Von Karman line, or 100 km),

7



there is a large variation in the ambient pressures, so that most often Pe �= Patm.

These variations in ambient pressure lead to significant losses in nozzle efficiency.

1.1.2 Pulse Detonation Engines

The Pulse Detonation Engines (PDE) in simple terms is an engine that utilizes deto-

nation waves to derive its thrust. The PDE operates in a cycle, shown schematically

in Figure 1.1. In this simple configuration, a stoichiometric mixture of reactants is

placed in a long tube with an open and closed end (i.e., thrust wall). The mixture

is then ignited from the thrust wall (a). This results in a shock and deflagration

wave (subsonic flame) quickly coalescing into a detonation wave (supersonic flame –

see section 1.4) propagating into the reactant mixture (b). The high pressure region

behind the wave imparts force on the thrust wall. When the detonation wave reaches

the open end of the tube (c), it will be reflected back into the tube as an expansion

wave (d). The expansion wave propagates into the tube, while at the same time

purging the combustion products from the tube (e). The expansion wave will then

reflect off of the thrust wall, and at that time the lowered pressure will draw fresh

reactants into the tube (f). The expansion wave will propagate into the tube, then

reflect back from the open end as a compression wave (h). This compression wave

will propagate through the re-introduced reactants (i), after which it will reflect of

the thrust wall as a shock (j) and a new cycle will begin. There are many advantages

to the PDE over conventional rockets propulsion systems. The conventional rocket

engines have to pump reactants at very high pressures into a combustion chamber,

requiring heavy turbo machinery, while the PDE does not need heavy turbo ma-

chinery, but rather naturally introduces the reactants into the combustion chamber

8



at much lower pressures. The simplicity of the concept is quite attractive, and the

PDE’s have been tested extensively over the years [22]. PDE’s have even been tested

as the sole source of propulsion on an experimental aircraft, the Scaled Composites

Long E-Z[24], which used an abundance of off-the-shelf parts.

1.1.3 AJAX and RIME concepts for thrust augmentation

Ejectors have been considered for years as a viable method of thrust augmentation

for various aerospace propulsion systems. Ejectors rely on the transfer of energy from

one stream (primary) to another stream (secondary). Higher thrust can be achieved

if the primary stream has a high specific energy and the secondary has a high mass

flow rate. A generic Rocket Induced Magnetohydrodynamic Ejector (RIME) [25]

consist of 3 parts, each consisting of variable area stream-tubes; (1) the generator,

(2) the accelerator, and (3) the mixer. The streams can be described by different

power plants, for example a rocket stream, a bypass tube, and the mixer. In the

RIME described by [25], the “rocket stream” serves as the MHD generator while the

“mixer” is the MHD accelerator. The MHD generator transforms the internal energy

of a fluid into electrical power. The fluid itself is a conductor of electricity, the motion

of this fluid through a magnetic field gives rise to electromotive force (drag) and flow

current in accordance with Faraday’s law of inductance. An MHD accelerator uses

the same principles, but in this particular case electrical energy is applied to the

system resulting in an electromotive force (thrust). In the AJAX system, energy is

diverted from the inlet flow via MHD generation, it is then re-applied after the fluid

passes through the combustor via MHD generation[26].
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1.2 Plasma Flows

1.2.1 The Lorentz Force

The various advanced rocket engine configurations explored and reviewed in this dis-

sertation utilize electromotive forces (Lorentz forces) generated by a moving charge to

augment thrust. The Lorentz Force is defined as the Coulombic attractive/repulsive

force between single or collection of charged particle(s) moving through an electro-

magnetic field:

F = j×B (1.3)

where F is the Lorentz force, j is the current density, and B is the applied magnetic

field. The current density is defined by Ohm’s law:

j = σ(E+ u×B) (1.4)

where σ is the conductivity, E is the electric field, and u is the fluid velocity. Ex-

pressing the electric field using Ohm’s law and using vector identities, the total rate

of energy deposition into the fluid can be expressed as :

j · E = j ·
(
j

σ
− u×B

)
=

j2

σ
+ u · (j×B) (1.5)

where the first term on the right side is the heating of the fluid (dissipation) and

the second term on the right side is the mechanical power obtained from the Lorentz

force (non-dissipative). The separation of the different forms of power expended in

the fluid becomes important as we evaluate efficiency later in this document [4].
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1.2.2 Plasmas and Cesium Ionization

A plasma is defined as a collection of charged particles where the long-range Coulom-

bic force is a factor in determining the statistical properties, but where the collection

of particles is low enough in density so that the forces exerted by a particles nearest-

neighbor is less than the long-range Coulombic force exerted by the particle’s many

neighbors. Thus, the study of plasma often coincides with the study of low-density

ionized gases. An ion is a molecule or atom which acquires enough energy to liberate

a valence, outer shell, electron from the respective molecule/atom. A collection of

ions, liberated electrons, and neutral particle’s form a plasma. In a weakly ionized

plasma, which we shall investigate throughout the remainder of this study, the ion

remains in close proximity with a liberated electron, thus the plasma as a whole can

be thought of as charge neutral, but locally charged [27].

One of the necessary properties of the configurations discussed earlier in this doc-

ument, the AJAX, the RIME, and other advanced configurations, is the ability for

the working fluid to conduct electricity. In order for a fluid to conduct electricity it

must be at least partially ionized. These advanced configurations achieved ioniza-

tion through thermal ionization. Thermal ionization follows mass action laws like

any chemical reaction. The heat of ionization, when expressed in Kelvin is referred

to as the characteristic temperature of ionization, Θi ≡ Hionizaiton/k, where k is

Boltzmann’s constant. Most common gases and combustion products, i.e., air, CO,

CO2, and noble gases, have high characteristic temperatures, so they do not ther-

mally ionize until temperatures in excess of 4000K are reached. However, if an alkali

metal, which has a low characteristic temperature of ionization, is added in small

amounts (on the order of 1 part in 100 or less) thermal ionization can be achieved
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at temperatures as low as 2000K. This process, referred to as seeding, changes the

working fluid into a plasma and allows the previously mentioned configurations to

conduct electricity under realistic operating temperatures [28].

A plasma will often take on different characteristics, depending on the temper-

ature, conductivity, and mean velocity, to name a few. Before we delve into the

various regimes in which the plasma being studied will exist, we must first look to

Maxwell’s equations for free charge[29]:

∇×H = ∂D
∂t

+ j

∇× E = −∂B
∂t

∇ ·B = 0

∇ · E = e(ni−ne)
ε0

(1.6)

where ne is the number density of electrons, ε0 is the permittivity of free space, H

is the magnetic field, D is the electric displacement field, and e is the charge of an

electron. As an example, if a one-dimensional gas were to flow perpendicularly to a

magnetic field, the induced electric field could be expressed as Ey ≈ 1
2
uxBz, which

can be shown as follows for the idealize case, j/σ → 0:

j = σ (E+ u×B)

E ≈ −u×B

Ey ≈ uxBz

(1.7)

The work done by a unit volume of this gas moving a length, L, oriented perpen-

dicularly to the magnetic field, B, using Equations 1.3 and 1.6, would produce the

following[28]:

FL =
1

2
σguB

2L (1.8)
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The energy stored in a magnetic field per unit volume is B2

2μ0
, which is often

referred to as the magnetic pressure. The ratio of these is

Work done by the gas

Energy stored in the field
= μ0σguL = Rem (1.9)

The Magnetic Reynolds number, Rem, is a good measure of the degree in which a

field induced by gas motion compares to the original magnetic field. This parameter

plays a very important role in determining the performance of the MHD accelerator

and generator.

1.3 Pulse Detonation Rocket Induced Magnetohydrodynamic

Ejectors and other Alternative Configurations

Spawned from the concept of AJAX [26] and RIME [25], Pulse Detonation Rocket

Induced Magnetohydrodynamic Ejectors (PDRIME) and other alternative configu-

rations are meant to push the bounds of MHD thrust augmentation. The Pulse

Detonation Rocket Engine (PDRE) is the core of the various alternative engine con-

figuration currently under review. The PDRE is composed of two major components:

a combustion chamber and a converging-diverging nozzle shown in Figure 1.2. The

combustion chamber introduces reactants on the front end, while the downstream

end connects to the converging-diverging nozzle. The converging end of the nozzle

has an extremely short length and a high exit-to-throat area ratio, AR ∼ 16, the

significance of which will be explained momentarily. A typical PDRE cycle is at the

core a PDE cycle, where reactants are introduced to the combustion chamber and

the reactants are ignited at the front end. A detonation wave is formed and propa-

gates downstream, but unlike the PDE cycle previously mentioned, the detonation
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wave will reflect off of the high area ratio converging section nozzle and reflect back

as a shock wave. The reflected detonation will raise the chamber temperature and

pressure so rapidly that the expelled gases can be thought of as started from this

high pressure or ‘blow down’ state [30]. The fluid is then accelerated out of the

nozzle where more thrust is derived. Over a cycle, the pressure of the chamber will

decrease as more products are being expelled. The chamber will then reach a critical

pressure in which reactants will be introduced at relatively low pressure, and a new

cycle will commence.

1.3.1 PDRIME

The PDRIME is actual a composite of some of the systems previously discussed,

that is, the AJAX, the RIME, and PDRE. The PDRIME is physically composed

of PDRE (the combustion chamber and nozzle), a bypass tube that sits directly

on top of the PDRE and magnets which are placed around the nozzle as well as

around the bypass tube which is illustrated in Figure 1.3 and 1.4. The effect of the

strengths of these magnetics will be explored later in this dissertation. In a PDRIME

cycle, reactants as well as a gas of low ionization energy, e.g., cesium, are introduced

into the combustion chamber and a PDRE cycle will commence. The fluid in the

combustion chamber will be heated sufficiently to ionize the seeded cesium. During

this process, hot products and ions will be expelled out of the nozzle. As the fluid

expands through the nozzle, the MHD generator in the nozzle will be engaged. The

generator will extract energy from the fluid moving at high velocities and reduce the

Mach number, M = u/a, to approximately unity at the nozzle exit. With M ≈ 1

at the nozzle exit, an unsteady shock will migrate from the nozzle exit into the
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bypass tube. The front entrance of the bypass tube is seeded with cesium, and as

the unsteady shock migrates upstream, the cesium will also pass through the shock

and be ionized. From there, the MHD accelerators in the bypass will be employed

and will utilize the Lorentz force to accelerate the fluid out of the bypass tube. The

aim of this configuration is to take energy out of the nozzle and more effectively

utilize it in the bypass tube in order to increase thrust and thus gain more impulse

and efficiency.

The PDRE has many good performance characteristics, e.g., low seeding pressure,

but one characteristic that we wish to improve is the nature of the unsteady pressure

throughout the PDRE cycle. As previously described, the pressure in the chamber is

quickly increased with the chemical reactions and subsequent reflection of detonation

waves, then gas is expelled from the combustion chamber and expanded through the

nozzle. As more combustion products are purged from the combustion chamber,

the pressure in the combustion chamber drops drastically with time. In a PDRIME

configuration, this drastic drop in pressure severely handicaps the effectiveness of

the MHD accelerator in the bypass tube. This impairment works as follows: as the

pressure drops in the chamber and nozzle, the back pressure driving the nozzle flow

drops. This dropping of pressure driving the nozzle correlates to a drop in pressure

entering the bypass tube exit. The pressure at the end of the bypass tube supports

the unsteady shock wave in the tube, so as this pressure drops, so does the strength of

the unsteady shock heating the fluid in the bypass. As the strength of the unsteady

shock dies down is strength, the temperature jump across shock is reduced, therefore

less ionization takes place. Less ionization leads to lower conductivity, and with

lower conductivity the MHD accelerator is less effective.

In order to prevent the negative effects of the unsteady pressure drop through-
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out the cycle, MHD forces can be utilized in the combustion chamber to drive the

heated fluid out of the combustion chamber at a more constant pressure. This con-

figuration, with applications of energy extracted from the nozzle into the chamber,

for a “magnetic chamber piston” configuration, would then possess the advantages

of low seeding pressure demonstrated in the aforementioned PDRE [31] as well as

the property of constant pressure possessed by a conventional rocket engine [5]. For

the basic PDRIME configuration, this combustion chamber has chemical reactions,

ionization of seeding ionizable gas, and reflection of detonation waves. But unlike the

PDRIME cycle, with a “chamber piston”, after the chamber is sufficiently heated, a

MHD accelerator is placed around the combustion chamber to create the piston forces

fluid out of the chamber using the Lorentz force. The ‘magnetic piston’ concept is

illustrated in Figure 1.5, and the PDRIME with the ‘magnetic piston’ is illustrated

in Figure 1.6. The concept of a ‘magnetic piston’ was first introduced by Kolb in

1957[32]. In his experimentation of magnetic shock tubes, Kolb found by applying a

magnetic field to a plasma, that the shock waves produced were stronger than that

produced in the absence of the magnetic field. The fundamental interaction of a

magnetic field with shocks and detonations will be explored in the present studies.

1.3.2 Cambier’s Quasi-1D Model and Verification

Cambier has performed analysis and numerical simulations of various PDRE configu-

rations; i.e., the PDRIME and the PDRE with a ‘magnetic piston’.The assumptions

that are part of the analysis are as follows. In his preliminary studies, Cambier

selected a simple configuration where the fluid velocity, electric field, and magnetic

field form a right hand coordinate system shown in Figure 1.7, indicating generator
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(decelerator) and accelerator configurations. The current density from Equation 1.4

can now be expressed as:

jy = σ(Ey − uxBz) ≈ σuxBz(Ky − 1) (1.10)

where K is the loading parameter, i.e., the ratio of the applied electric field to the

induced field: Ky = Ey

uxBz
. This is an important parameter in Cambier’s simplified

modeling of MHD interaction [4]. When ux > 0 and 0 < Ky < 1, energy is ex-

tracted from the fluid, the Lorentz force is negative, as is jy, and the device acts

as a “generator”, shown in Figure 1.7(a). When Ky > 1, a positive application of

energy takes place, the Lorentz force is positive, as is jy, and the device acts as an

“accelerator”, shown in Figure 1.7(b). It is the generator configuration that allows

energy extraction as shown in Figure 1.3, with energy input to accelerate the flow,

as shown in Figures 1.4–1.6. In the present studies we use Ky = 0.5 for the generator

and Ky = 1.5 for the accelerator. The ideal case of no ohmic heating, j2/σ ≈ 0, is of

particular interest, because it forms a very simple analytical expression, but it is not

always valid. In order to neglect the ohmic heating as compared to the mechanical

work, the following condition must be satisfied:

∣∣∣∣ j2/σ

u · (j×B)

∣∣∣∣ =
∣∣∣∣ jy
σuxBz

∣∣∣∣ =
∣∣∣∣Ey − uxBz

uxBz

∣∣∣∣ = |Ky − 1| � 1 (1.11)

Cambier also assumes a constant magnetic field as well as a sufficiently low Rem.

In the case of a highly conducting plasma (σ ≈ 1000 mhos/m), which can be seen in

the combustion chamber, the constant magnetic field assumption is only valid if the

loading factor is small, which also leads to the low dissipation approximation[4].
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1.4 Detonation Waves and MHD Effects

The foregoing discussion pertains to the proposed ability of magnetohydrodynamics

(MHD) to affect reactive processes via seeding the flow with potentially ionizing

species such as cesium. While this notion will be explored in a global sense for the

PDRIME and alternative detonation-based engine configurations in Chapter 5, the

ability of magnetic and electric fields to influence combustion processes requires a

more detailed examination, in particular, including the effect of complex reaction

kinetics. Hence a fundamental understanding of transient detonation processes, and

the ultimate impact of MHD on these processes, is required and will also be examined

in this thesis.

The study of detonation waves dates back to the late 19th century, where Chapman[6]

and Jouguet[7] modeled detonations as a shock wave supported by the heat release

of the combustible material in an infinitely thin zone, where all chemistry and dif-

fusive transport takes place. Later Zel’dovich[8], Von Neumann[9], and Doering[10]

independently represented the detonation as a confluence of a one-dimensional shock

wave moving at a detonation velocity, followed by a chemical reaction zone of finite

length; this came to be known as the ZND model for a detonation wave.

While the true structure of detonation waves inevitably calls for representation of

multi-dimensional effects with complex reaction kinetics, the simple one-dimensional

detonation structure provides a rich spectrum of dynamical features which are worthy

of detailed exploration and which have relevance to multi-dimensional phenomena,

e.g., cellular detonations [11]. Even with single step Arrhenius kinetics [12, 13, 14, 15],

pulsations or instabilities associated with a 1D overdriven ZND detonation may be

explored in detail, with important physical features and computational requirements

18



established. For a rapidly initiated, spark-induced detonation, where the detonation

decays from an over-driven state toward the self-sustaining Chapman-Jouguet limit

cycle, one obtains a sequence of different modes of physical oscillation between the

flame and shock front. The numerical analysis of this effect has been explored previ-

ously by Cambier[16] using complex H2-air detonation kinetics and highly-resolved

numerical simulations, but with only a spatially and temporally second-order con-

vergence rate shock capturing scheme. The initiation of evolving 1D detonation

instability modes is also observed in calculations by Leung et al.[17] using a two-step

chain-branching reaction model [18] and a Roe scheme, with an overdriven ZND

detonation as the initial condition. Similar calculations with a second-order accu-

rate slope-limited centered scheme and a 7-step reduced chemical mechanism for

acetylene-oxygen detonations [19] have allowed exploration of the stabilizing effect

of dilution of the mixture with argon.

In the present study (Chapters 6 and 7), we combine higher-order numerical

methods and complex reaction kinetics for the detailed analysis of the non-linear

dynamics associated with a spark-induced detonation. While simplified one-step

and two-step chemistry models have provided useful guidance in elucidating the dy-

namics of detonation instability, it is important to understand the influence of the

complexity of a realistic reaction mechanism, since energy release and unsteadiness

in the coupling of the wave front and induction zone can affect detonation initiation

or failure [20]. Moreover, important physical processes associated with deflagra-

tion to detonation transition (DDT) require an understanding of the formation and

amplification of localized explosion centers and positive-feedback flame acceleration

mechanisms [21, 22, 23]. These phenomena are often easier to understand through

dimensionality reduction, while preserving some of the complexity of the physics (i.e.
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reaction kinetics). The use of high-order numerical methods can also be a powerful

tool in the analysis of such complex flows, but we need to understand the interaction

of numerical (spatial accuracy) and physical (chemical) length scales. This must be

done before adding other effects such as species diffusion and viscosity; hence our

study is limited to reactive Euler flow. Since the use of high-order numerical methods

can become a powerful tool in studying the non-linear detonation dynamics, it is also

important to gain a good understanding of the effect of the non-linear algorithms

on the flow dynamics. In a similar fashion to many previous studies of detonation

dynamics, the objective of the present work is not to provide realistic detonation

simulations, but to systematically investigate these dynamics through the addition

of increasing complexity in the models. We expect of course that adding physical

diffusion will eliminate some characteristic length scales of instability, an effect which

can be investigated in the future.

1.5 Goals of the Present Studies

Among the goals of the present research is first to explore alternative configurations

of the PDRIME to achieve optimal performance from the MHD augmentation. The

various engine configurations used in our research took on a multitude of forms, these

forms are shown in figures 1.2 through 1.6. While the present studies described in

Chapter 5 focused on quasi-one dimensional simulations, these results, together with

those in Zeineh [33], were published in a complete study[34].

Inherent to the ability of the PDRIME and its modified configurations to operate

is the ability of an applied magnetic field to affect a chemical reaction. Hence in

the present study we have separately studied the propagation of a detonation wave
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with complex kinetics, including its inherent instabilities (Chapter 6), and then to

examine the effects of the cesium seeding and an applied magnetic field on the dy-

namics of the detonation (Chapter 7). Thus both aspects of this dissertation, the

simplified modeling and the detailed detonation simulations, may be used to validate

the PDRIME and related MHD propulsion concepts.
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Figure 1.1: The generic pulse detonation cycle. (a)-(c) represent ignition and det-

onation wave propagation. (d)-(g) represents reflection of an expansion wave from

the tube opening to the thrust wall and back to the tube opening. (h)-(j) represents

the reflection of compression waves which eventually leads to the re-ignition of the

reactants which are drawn into the tube at stage (f).
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Figure 1.2: PDRE Pulse Detonation Rocket Engine

Figure 1.3: Pulse Detonation Rocket Engine with with Nozzle Generator (NG) with

MHD nozzle generation flight configuration

23



Figure 1.4: Pulse Detonation Rocket Induced MHD Ejector (PDRIME), the MHD

accelerator is located in the Bypass Section

Figure 1.5: Pulse Detonation Rocket Engine with Chamber Magnetic Piston (CP)

(from Cambier[5])
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Figure 1.6: Pulse Detonation Rocket Induced MHD Ejector with Chamber Magnetic

Piston

25



(a) (b)

Figure 1.7: Lorentz Force (J × B)x when (a) the MHD generator is on, with fluid

moving in the positive x-direction, applied magnetic field in the positive z-direction,

and current flowing in the negative y-direction, and (b) the MHD accelerator is on,

with fluid moving in the positive x-direction, applied magnetic field in the positive

z-direction, and current flowing in the positive y-direction.
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CHAPTER 2

Governing Equations and Physical Phenomena

An accurate description of the governing equations is presented here, describing the

flow and evolution of properties associated with detonation and MHD processes.

2.1 Conservative Formulation

The governing equations are presented here in the differential form, but later will be

expressed in the integral form, which is necessary for the finite-volume formulation

used in some simulations of the PDRIME. The flow equations are expressed as a

hyperbolic equation with a source term:

∂Q

∂t
+∇n · F = Ω̇ (2.1)

where the Q, F, and Ω̇ are arrays of conserved variables, normal component of the

flux density of Q, and source terms, respectively. In the current study all terms on

the left hand side (LHS) of Eqn 2.1 are strictly in the hyperbolic form, while the

right hand side (RHS) will express all other terms which will be referred to as source

terms. Source terms can describe the diffusion, chemical kinetics, or enforcement

of geometric coordinate constraint. Operator splitting, which will be discussed in

greater detail in Section 3.1, can be employed to compute the convective contribution,
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∂Q

∂t

∣∣∣∣
conv

= −∇n · F (2.2)

as well as various source terms,

∂Q

∂t

∣∣∣∣
mhd

= Ω̇mhd,
∂Q

∂t

∣∣∣∣
kinetics

= Ω̇kinetics (2.3)

These terms then can be combined to describe the total change of the conserved

variables,

∂Q

∂t
=

∂Q

∂t

∣∣∣∣
conv

+
∂Q

∂t

∣∣∣∣
mhd

+
∂Q

∂t

∣∣∣∣
kinetics

+ ... (2.4)

2.1.1 Single-Temperature(1T) Hydrodynamic Formulation

The hydrodynamic formulation of Eqn. 2.1 is well established and can be used to

describe the evolution of the density, velocity, and pressure fields of the fluid where

the conserved variables and normal fluxes can be described as such:

Q =

⎛
⎜⎜⎜⎝

ρs

ρu

E

⎞
⎟⎟⎟⎠ F =

⎛
⎜⎜⎜⎝

ρsun

ρu · un + Pn

(E + P ) un

⎞
⎟⎟⎟⎠ (2.5)

where the total mixture density ρ ≡ ∑s ρs, n is an arbitrary direction, un = u · n,
and the total energy and pressure can be expressed as:

E =
∑
s

ρseint,s +
1

2
ρu2 (2.6)

P = (γ − 1)

(
E − 1

2
ρu2

)
(2.7)
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where eint,s is the specific internal energy of the sth species and γ is the adiabatic

index. For a calorically perfect gas (constant cv) the specific internal energy can be

expressed as:

eint,s =
P

γ − 1
(2.8)

For thermally perfect gases, which is of particular interest in the present study, the

specific internal energy of a species can be expressed as:

eint,s =

∫
cv,s(T )dT + e0,s (2.9)

where cv,s is the specific heat capacity at constant pressure for the sth species and

the e0,s is the specific internal energy of formation for the sth species.

2.1.2 Single-Temperature(1T) Ideal MHD Formulation (Rem → ∞)

By combining Maxwell’s equations and the induction equation, Equations 1.6 and 1.4

respectively, as well as adding a zero charge separation approximation, ne − ni ≈ 0,

one can describe the time evolution of the magnetic field as:

∂B

∂t
= − 1

μ0σ
∇×∇×B︸ ︷︷ ︸

diffusive

−∇×u×B︸ ︷︷ ︸
convective

(2.10)

The time varying B contains a convective term which behaves as a hyperbolic equa-

tion and a diffusive term, which behaves as a parabolic equation. Using the criteria

set in previous sections, the convective term will be treated as the LHS, of the form

of Eqn. 2.1, and the diffusive term as the source term. If the conductivity were to

be extremely large such that σ → ∞, then the diffusive term of Equation 2.10 would

become zero, leaving only the convective portion of the equation. When this partic-

ular case is cast into the divergence form of Eqn. 2.1 as well as incorporating the
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magnetic pressure contribution to the momentum and energy equations, i.e. Lorentz

force and Joule heating terms, with hydrodynamic formulation of Equation 2.5, it is

referred to as the ideal MHD formulation,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

B

E∗

⎞
⎟⎟⎟⎟⎟⎟⎠ F =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρun

ρuun + P ∗n− 1
μ0
BBn

unB− uBn

(E∗ + P ∗) un − 1
μ0
u ·BBn

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.11)

where Bn = B · n, and the total energy and pressure can be expressed as:

E∗ =
∑
s

ρseint,s +
1

2
ρu2 +

B ·B
2μ0

P ∗ = P +
B ·B
2μ0

Where E∗ is the total energy, P is the mechanical pressure, and the total pressure

is defined as P ∗ ≡ P + Pm. Often, B·B
2μ0

is referred to as the magnetic pressure, Pm.

Without the presence of a magnetic field, B · B = 0, the formulation of Equation

2.11 will reduce to the hydrodynamical formulation of Equation 2.5.

2.1.3 Two-Temperature(2T) Formulation

It has been shown by Cambier[35] that under certain conditions the electrons can

be heated adiabatically while the bulk fluid can be heated non-isentropically. Con-

versely, the electrons can be heated non-adiabatically while the bulk fluid is heated

adiabatically. One example of the latter is when a microwave is used to excite the

electrons in the fluid. In the case of the former, a fluid may pass through a stationary

shock at Mach M = 10, but while the electron entropy speed is the same as that of

the bulk fluid, the speed of sound of the electron is considerably faster, ce =
√

γPe

ρe
,
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where the ratio of molar masses of Nitrogen and the electron is
MWN2

MWe
∼ 105. In

the electron reference frame there is therefore no shock, Me � 1. When this occurs,

the bulk fluid and the electrons have different temperatures, and these temperatures

will relax on time scales proportional to the electron-heavy particle elastic collision

frequency. The two-temperature MHD formulation (MHD2T), Equation 2.1, builds

from the MHD1T formulation but contains additional terms which describe the evo-

lution of the electron energy. The electron thermal energy is transported as:

dEe

dt
+∇ (uEe) = −Pe∇ · u (2.12)

Because the electron is convected at u and |u|/ce � 0, the convection of the electron

is subsonic and can be treated isentropically. This allows for the recasting of the

electron energy into the electron entropy, Se, which is a conserved quantity and

does not require a special source term for convective transport, where the conserved

variables and normal fluxes can be described for the two-temperature formulation:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρu

B

E∗

Se

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρun

ρuun + P ∗n− 1
μ0
BBn

unB− uBn

(E∗ + P ∗) un − 1
μ0
u ·BBn

Seun

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)

where the electron entropy is defined Se ≡ Pe

ργe
and γe ≡ 5

3
. The electron energy, total

energy and total pressure are defined:

Ee =
Seρ

γe−1

γe − 1
=

nekTe

γe − 1
(2.14)

E∗ =
∑
s �=e

ρseint,s +
1

2
ρu2 +

B ·B
2μ0

+ Ee (2.15)
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Without the presences of a magnetic field, B ·B = 0, and this formulation will reduce

to the two-temperature hydrodynamical formulation (EULER2T).

2.2 Overview of Source Terms for Governing Equations

2.2.1 Combustion and Ionization Reaction Kinetics

In the present study, the kinetic processes which include the chemical reactions of

combustion processes, the ionization of the fluid, and the temperature relaxation of

the electron must be properly captured. In the case of chemical reactions and ion-

ization, chemical species are not strictly conserved, but particles (chemical elements)

and mass are, while in the case of temperature relaxation, energy can be transferred

from the heavy particles to the electrons and vice-versa. This source term can be

represented in the following way,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρs

ρu

E

Se

⎞
⎟⎟⎟⎟⎟⎟⎠ Ω̇kinetics =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω̇s

0

ω̇E

Ṡe

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.16)

where ω̇s is the production of the sth species, ω̇E is the energy production due to

change in formation energy, and Ṡe is the electron entropy production. A more

detailed description of these terms will be discussed in the following sections as well

as Section 2.3.
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2.2.2 MHD Transport

2.2.2.1 Fixed Magnetic Field (Rm → 0)

In the MHD source formulation that is used to study the PDRIME configurations,

and some of the MHD-detonation interactions, there is no conservation law for the

magnetic field, but rather the Lorentz force and Joule heating are incorporated into a

hydrodynamic formulation of the governing equations. By incorporating the Lorentz

force exerted by an applied magnetic field, Eqn. 1.3, as well as the mechanical power

obtained from the Lorentz force and the associated Joule heating, Eqn. 1.5, one can

recover the following MHD source terms for a fixed magnetic field:

Q =

⎛
⎜⎜⎜⎝

ρs

ρu

E

⎞
⎟⎟⎟⎠ Ω̇mhd,fixed =

⎛
⎜⎜⎜⎝

0

j×B

j · E

⎞
⎟⎟⎟⎠ (2.17)

In the present study, when this approximation of MHD is used, Cambier’s [4] sim-

plified MHD model will be implemented, which was previously discussed in Section

1.3.2. In that model, the system includes the electric and magnetic fields as orien-

tated in Figure 1.7. In addition, one can simplify the expression for current density

with Equation 1.10, such that the x-component of the Lorentz force becomes:

(j×B)x ≈ σuxB
2
z (Ky − 1) (2.18)

and the Joule heating term becomes:

j · E ≈ σu2
xB

2
z (Ky − 1)Ky (2.19)

This formulation will be employed in the simplified PDRIME simulations and in

some of the detonation-MHD studies.
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2.2.2.2 Resistive MHD (Rem ∼ O(1))

Seldom do real problems act ideally, as described in the perfectly conducting ideal

MHD approximation of Eqn. 2.11 or the perfectly resistive fixed field line approx-

imation of Equation 2.17. Typically, there is a finite conductivity such that the

diffusive and convective terms of Eqn. 2.10 are of the same order of magnitude, thus

neither can be neglected. The diffusion of magnetic field and magnetic energy can

be expressed as the following source term:

Ω̇mhd, diffuse =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

∇ ·
(

1
μ0σ

∇B
)

j · E

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.20)

where the evolution of the magnetic energy is prescribed by

j · E = ∇ ·
(

1

μ0σ
∇T

)
(2.21)

where the Maxwell stress tensor is defined as Tαβ = |B|2
2μ0

δαβ − BαBβ

μ0
. A more detailed

discussion of magnetic field diffusion will be presented in Section 2.4.

2.3 Kinetics

In order to properly resolve the chemical reaction and ionization processes, one must

first characterize the plasma and chemical kinetics. Using detailed balancing one can

express the rate of species production and destruction in the following manner.

ω̇s =
∑
r

νrskfr
∏
j

ρ
ν′rj
j −

∑
r

νrskbr
∏
j

ρ
ν′′rj
j (2.22)
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νrs = ν ′′
rs − ν ′

rs

where ν ′′
rk and ν ′

rk are the coefficients of sth species in the rth forward and backward

reactions, respectively, and kfr and kbr and the forward and backward chemical rates

of the rth reaction. When the temperature of the fluid is near thermal equilibrium,

detailed balancing can be used to determine backward rates:

kb = kfexp

(∑
s

νsΔGs/T

)
(2.23)

where ΔGs is the change in Gibbs free energy of the sth species. In cases where the

temperature is far from equilibrium, for example when there is a heavy and electron

temperature, detailed balance would not be appropriate to determine the backward

rates. The forward reaction rates are given by the modified Arrhenius equation of

the form:

k = AT ηexp(−Θ/T ) (2.24)

Where A is the Arrhenius pre-factor, η is the Arrhenius coefficient, and Θ is the

activation temperature. Using the form of Equation 2.16 with Equation 2.22, the

energy production due to the internal energy change can be expressed as ω̇E =∑
s ωse0,s.

2.3.1 Combustion Kinetics

2.3.1.1 Single Step Kinetics

During preliminary testing, we simulated a single-step H2 − O2 reaction, reactants

H2 and O2 form product H2O

H2 +
1
2
O2 → H2O (2.25)
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The H2O production rate takes the Arrhenius form of Equation 2.24 in which ω̇p =

Kρfe
−θ/T . In this particular case, ρf is the density of a stoichiometric mixture of

the fuel, H2, and oxidizer, O2, and ρp is the density of the product, H2O. The

thermodynamic properties of the reactants and product are given in Table 2.1. The

differences in the thermodynamic properties between reactants and products found

in this table are due to the differences in the molar mass, M , and the degrees of

freedom associated with the molecular configuration of each species.

2.3.1.2 Detailed Reaction Kinetics

In the present study, we have primarily focused on detailed kinetics of a simple

combustion system (H2 − O2). Another approach to the single step reaction in

Equation 2.25, commonly chosen in fundamental studies of detonation dynamics, is

a constant-volume one-step reaction model, in which the entire chemistry is described

by the evolution of a single progress variable that follows an exponential relaxation

with a characteristic time-scale given by the induction delay. This progress variable

is also associated with the fractional amount of heat released into the flow. In that

model, the induction delay time, τind, follows a simple exponential fit, tind � eθa/T .

The delay being essentially caused by the need for a sufficient amount of radicals

from chain-branching reactions, and the production of those being an endothermic

process, the parameter θa in this formulation is an averaged activation energy of the

key radical-producing reactions.

This is a reasonable approximation to the chemistry in that region, albeit within

limits. To study detonation dynamics more completely, we have used the detailed

chemistry to compute and parametrize the induction delay as a function of initial
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temperature and pressure, with the mixture held fixed to stoichiometric hydrogen-

air. As in a previous study [16], the chemical kinetics of a dilute hydrogen-air mixture

were solved here. The chemistry includes eight reacting species, H2, O2, H, O, OH,

HO2, H2O2, H2O, and the non-reacting diluent, N2, where a compilation of NASA

and JANNAF thermo-chemical data is obtained from [36]. As prescribed by [37],

38 elementary reactions, found in Appendix A, are used in this mechanism and the

backward rates are computed from equilibrium constants. As shown in Figure 2.1, the

delay does follow an exponential form, ti ∝ α(P )eβ(P )/T , as expected. The parameter

β in this formulation is an averaged activation energy of the key radical-producing

reactions. However, this approach yields unrealistic profiles of the post-shock region,

since the heat release is gradual.

A better description is obtained with a two-step reaction model [38, 39], where

the heat release is associated with a second progress variable whose evolution can

start only at the end of the induction delay, which now follows a linear time variation.

While this two-step model allows a separation between the induction and heat release

zones, the model is unsatisfactory in several ways. First, the rate of heat release

is assumed independent of temperature, which is unrealistic, as the flow heating

accelerates the combustion. Generally speaking, a stiff differential equation for the

progress variable can be used to reproduce this non-linear effect, but the dynamics

can be different from the real conditions. Second, when the flame is accelerated

towards the shock, the two reaction zones (induction and flame) start to merge,

even if species diffusion is neglected; the enforcing of two separate zones with a

two-step model could thus modify the dynamics of the strongly coupled shock-flame

system. It is for these reasons we will utilize detailed reaction kinetics to perform

the simulations in the present study, per Equations 2.22 – 2.24 and the full H2 −O2
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combustion mechanism described in Appendix A.

2.3.2 Ionization Kinetics

The existence of plasma in a working fluid is studied via the field of magnetohydro-

dynamics. If a working fluid’s characteristic temperature of first ionization, Θi, is

high relative to the fluid temperature, it is imperative to seed the fluid with a species

with a sufficiently low characteristic temperature to create the flow of ionized gas.

The principle components of the working fluids in this study, air, H2, O2, and H2O,

have high characteristic temperatures relative to the fluid temperature in the scope

of the present study. A sampling of ionization temperatures are shown in Table

2.2. As prescribed by Cambier in [40], cesium is chosen as the seeded species due

to its low characteristic temperature of ionization. In the modeling of the ionization

and recombination of cesium in the working fluid, we start with a simple three-body

reaction mechanism:

Cs+M � Cs+ +M + e− (2.26)

where M in this particular case represents a third-body species. In the present study,

it is extremely important to be able to calculate the conductivity of the plasma in

order to correctly simulate MHD. The scalar conductivity, σ, is defined as:

σ =
nee

2

meνm
(2.27)

where ne is the electron number density, me is the electron mass, and e is the Coulom-

bic charge where the electron collisional frequency, νm is defined as:

νm = ne Qei v̄e︸ ︷︷ ︸
νei

+N
∑
s �=e

∫ ∞

0

dεQes(ε) v · f(ε)︸ ︷︷ ︸
νen

(2.28)
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where Qei and νei is the electron-ion elastic collisional cross-section and collisional

frequency, Qes and νes is the electron-neutral elastic collisional cross-section and

collisional frequency of the sth species, ve is the electron thermal velocity, and f

is the electron distribution function. Electron-neutral cross-section data are found

in [41] while the electron-ion cross-section, commonly referred to as the Coulombic

cross-section is given by [42]:

Qei =
2.87× 10−14

T 2
[eV ]

lnΛ (2.29)

where the Coulombic logarithm is lnΛ = 13.57 + 1.5 log T[eV ] − 0.5 log ne. In the

regime where the fluid is strongly ionized, α � 10−4, the electron-ion collision term

of Equation 2.28 dominates, and the conductivity scales as follows:

σ ∼ T 5/2
e (2.30)

2.3.3 Two-Temperature(2T) Relaxation

When a plasma is rapidly heated by a shock, radiation, or other process, the heavy

particle and the electron temperatures can be altered from equilibrium and must

undergo a series of elastic collisions to return them to equilibrium, or thermalize. If

the collisional time scale is significantly faster than the fluid time scale, the heavy

particles and electrons can be assumed to be in equilibrium. But, when the collisional

time scales are much slower than that of the fluid, the temperatures can be treated

completely separately. In the event the time scale associated with thermalization is

on the order of the fluid time scale, the finite rate of elastic energy relaxation must

be taken into account. The relaxation of the electron energy is as follows [42]:

dEe

dt
= νm

(
2me

M

)
3

2
nekb (Th − Te) (2.31)
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where Th is the translational temperature of the heavy particles. Equation 2.31 can

be recast in terms of electron entropy as follows:

Ṡe =
dSe

dt
= νm

(
2me

M

)
3

2
nekb (Th − Te) (γe − 1) ρ1−γe (2.32)

2.4 MHD Transport

In order to properly characterize a non-ideal system in the present of an imposed

magnetic field, one must account for both the convective and diffusive transport of

the magnetic field. Let us re-examine the formulation of the temporal evolution of

the magnetic field expressed in Equation 2.10:

∂B

∂t
= − 1

μ0σ
∇×∇×B︸ ︷︷ ︸

diffusive

−∇×u×B︸ ︷︷ ︸
convective

Starting from 2.1 and the description of the source term from Eqn. 2.20, one can

define a system which describes the evolution of the magnetic field and magnetic

pressure due to diffusive transport in the divergence form as follows:

∂B
∂t

= ∇ · 1
μ0σ

∇B

∂PB

∂t
= ∇ · 1

μ0σ
∇T

(2.33)

where PB is the magnetic pressure which was previously defined as PB = B2

2μ0
. Now

let us rewrite Eqn. 2.33 in a flux formulation of the form,

Qt = ∇ · Fν (2.34)
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where Fν represents the magnetic diffusive flux,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Bx

By

Bz

PB

⎞
⎟⎟⎟⎟⎟⎟⎠ Fν =

1

μ0σ

⎛
⎜⎜⎜⎜⎜⎜⎝

∇Bx

∇By

∇Bz

∇T

⎞
⎟⎟⎟⎟⎟⎟⎠ (2.35)

This description of MHD diffusive transport is particularly useful when the con-

ductivity of a fluid is finite, as in the problems represented in this thesis. The limits

of ideal MHD and perfectly resistive MHD, where σ → ∞ and σ ≈ 0, respectively

will also be investigated.

41



Species R [ J
kg−K ] cv [ J

kg−K ] e0 [ J
kg
]

H2 −O2 692.8 2.425× 103 0

H2O 461.9 2.079× 103 1.344× 107

Table 2.1: List of thermodynamic properties of a stoichiometric mixture of H2 −O2,

reactant, and H2O, product, for a simple, single-step reaction.

Species Θi, [K]

Cs 45,141

K 50,364

Na 59,647

Li 62,548

O2 139,834

H2O 146,217

O 157,937

CO2 167,105

H2 181,030

N2 181,030

Ar 182,887

He 285,239

Table 2.2: Listing of characteristic temperatures of first ionization of selected

species[43].
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Figure 2.1: Computed induction delay as a function of initial temperature at various

pressures P for the stoichiometric H2-air reaction with complex kinetics. Curves can

be fitted as t ∼ α(P )e
β(P )
T .
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CHAPTER 3

Numerical Methods

The following chapter will list and describe the numerical methods utilized to solve

the governing equations described in the previous section.

3.1 Operator Splitting

As shown in Equation 2.4, it is often necessary to solve the LHS with one solver while

solving the various RHS source terms with other solvers. For example, one might

wish to solve a problem which involves convection, LHS, as well as chemical kinetics,

RHS, and utilize different solvers, or operators, Lconv and Lchem, respectively. By

utilizing these operators, the solution of Q at t = tn+1, where tn+1 = t0 +Δt, can be

determined as follows:

ΔQchem = LchemQn −Qn

ΔQconv = LconvQn −Qn

Qn+1 = Qn +ΔQchem +ΔQconv

(3.1)

Figure 3.1 illustrates the contribution of the two operators in attaining the solution

at t = tn+1.

When stronger coupling is needed amongst multiple operators, either for stability

or accuracy, Strang splitting[44] can be employed. Strang splitting the convective
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and chemical kinetic operator of the previous example would go as follows:

Q̃ = LchemQn

Qn+1 = LconvQ̃

which can be simply expressed in the compact notation:

Qn+1 = LconvLchemQn (3.2)

Figure 3.2(a) illustrates how the chemical kinetic solver operators on the solution at

t = tn, and the convective solver operates on the updated solution in order to obtain

the solution at t = tn+1. Since Strang splitting is not a commutative operation, the

ordering of the operators can indeed yield unique solutions,

LchemLconvQn �= LconvLchemQn (3.3)

Figures 3.2(a) and 3.2(b) illustrate how commuting the operators could yield a dif-

ferent solution.

3.2 Time Step Restrictions

3.2.1 Convection

For linear or linearized hyperbolic equations, the Courant-Friedrich-Levy(CFL) con-

dition ensures that information does not propagate further than one grid cell in a

given time step:

Δtconv ≤ νΔx

λ
(3.4)

where Δtconv represents the convection-limited time step, ν is the Courant number,

for linear stability 0 < ν ≤ 1, Δx is the grid cell size, λ is the wave speed of the
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convected information. For a purely convective simulation, where there is no kinetic

or diffusive processes, the CFL would be sufficient for stability of the time integration.

3.2.2 Kinetics Resolution

Solving kinetics presents a different challenge in that the reaction time scale must be

taken into consideration in order to determine the proper time step restriction. For

the simple case of an explicit single step reaction with the form, ω̇p = ρfKe−θ/T , the

time step restriction would be determined as,

Δtchem ≤ ∣∣K−1eθ/T
∣∣ (3.5)

In the case of an explicit complex reaction of the form of Equation 3.41,

Δtchem ≤ min

(
ρk
ω̇k

,
Eint

ω̇E

)
(3.6)

Since the kinetic source term of Equation 2.3 is often extremely stiff and Δtchem ∼ 0

when ρk ∼ 0, an implicit approach will be taken. When a strictly implicit numerical

scheme is employed, the time step restrictions for stability of Equation 3.6 are no

longer required. But even though restrictions for stability are no longer required,

there still exist accuracy considerations. The following accuracy time step restriction

was introduced in the present study:

Δtchem = min

(
εc

ρ∗k
|ω̇k| , εT

Eint

|ω̇E|
)

(3.7)

Where ρ∗k is the greater value of ρk and a floor density, εc is the maximum species

creation/destruction fraction, and εT is the maximum temperature cooling/heating

fraction.
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3.2.3 Diffusion

When solving diffusive transport problems, which are expressed as parabolic partial

differential equations of the form, ut = −μuxx, the explicit time step restriction is

quite similar to that of the convective transport. The explicit time step restriction

is given by,

Δtdiff ≤ 0.5Δx2

μ
(3.8)

where μ represents the “kinematic viscosity”. This time step can become quite

constraining with the increase in the diffusivity, μ, or with moderate grid spacing

reduction (Δt ∼ Δx2). For these reasons, spatially implicit numerical schemes will

be utilized to solve problems of this type.

3.3 Explicit Runge Kutta Scheme

In order to obtain stable high order convergent solutions in time, a TVD Runge-Kutta

(RK) time integrator is used. This particular version of the Runge Kutta family was

implemented by Shu and Osher in [45]. For 3rd order Runge-Kutta (RK3), ∀ j

Q
(0)
j = Qn

j

Q
(1)
j = Q

(0)
j + Lj(Q

(0)
j )

Q
(2)
j = 3

4
Q

(0)
j + 1

4
Q

(1)
j + 1

4
Lj(Q

(1)
j )

Qn+1
j = 1

3
Q

(0)
j + 2

3
Q

(2)
j + 2

3
Lj(Q

(2)
j )

(3.9)

where Lj represents the flux into the jth grid cell and Q(k) represents the conserved

variables of the kth step of the Runge-Kutta integration. Equation 3.9 will serve as

the fluid convection operator, Lconv, for the remainder of this study, unless otherwise

stated, while the temporally and spatially integrated flux, Lj, will be determined by
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Riemann solvers which will be discussed in the next sections.

3.4 Hyperbolic Solvers – Approximate Riemann Solvers

In the present study, it is imperative that the fluid convection solver be able to

capture shocks without introducing dispersion or excess dissipation into the solution.

Let us now recast the LHS of our governing equation, Equation 2.1, into its integral

or conservative form:
∂

∂t

∫
Q dV +

∫
FdS = 0 (3.10)

We will next assume a given grid cell is uniform in its properties, and can be ap-

proximated with its cell-averaged value. Then Equation 3.10 can take the following

form:
∂Q

∂t
+

1

V

∑
s

FsdAs = 0 (3.11)

where Fs and dAs are the areas and normal fluxes of the sth face of a given grid cell.

As a building block, we will utilize Roe’s scheme[46] to solve for the flux at the face,

Fi+1/2 as follows:

Fi+1/2 =
1

2
(FR + FL)− 1

2
RΛ̃L (QR −QL) (3.12)

where FR,L and QR,L represent the normal fluxes and conserved variables of the right

and left side of the face, respectively, L is the matrix of eigenvector, R is the inverse

of the matrix of eigenvector, and Λ̃ are the HLLE[47] conditioned eigenvalues. The

eigen-system is discussed in more detail in Appendix B. For the 1st order spatial

accuracy convergent Roe scheme, the right fluxes and conserved variables are, Fi+1

and Qi+1, respectively and the left fluxes and conserved variables are, Fi and Qi,
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respectively. In the proceeding sections, the numerical schemes used to calculate

high order spatially convergent conserved variable solutions will be discussed.

In order to achieve a spatially high order convergent interpolation of the conserved

variables at the cell interface, QR,L, the governing system of equations, Equation 2.1,

must be linearized in the following manner:

Qt + Fn = 0

Qt +AQn = 0

LQt + LRΛLQn = 0

Wt + ΛWn = 0

(3.13)

where ()n represents the spatial derivative in an arbitrary direction, the convective

flux jacobian is A = ∂F
∂Q

and the characteristic variable array, W = (w1, w2, ...)
T is

defined as the projection of the conserved variables, W = LQ, and by definition

LR = RL = I. Now that the governing equations have been linearized with the pro-

cess shown in Equation 3.13, it can now be expressed as a system of scalar hyperbolic

differential equations:

wt + λwn = 0 (3.14)

where the eigenvalues are the diagonal components of the matrix of eigenvalues,

λi = Λi,i. After using one of the high order spatially convergent methods, which

will be discussed in greater detail in the preceding sections, to approximate the

characteristic variable solution at the cell interface, WR,L, the characteristic variables

can be projected back to its component form using the following operation:

QR,L = RWR,L (3.15)

The updated conserved variables determined from Equation 3.15 are then used to

calculate the interface flux, FR,L, as well as construct a new eigensystem.
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3.4.1 Weighted Essentially Non-Oscillatory (WENO) Schemes

In Weighted Essentially Non-Oscillatory (WENO) schemes, first introduced by Liu,

Osher, & Chan [48], high spatial order of convergence is achieved where the solution

is smooth and a spatial convergence of no greater than O(1) near a discontinuity

in the solution. In the present study, we utilized a 5th order spatially convergence

variant of WENO which weights the contribution of three stencils, illustrated in

Figure 3.3. Here we will describe how wL,i+1/2 is computed in [48] on the basis of the

ENO stencil[49]. For simplicity, the “L” subscript will be dropped. The formula for

the right characteristics are symmetric and will only be shown when they vary from

the left characteristics.

The rth order ENO scheme chooses the “smoothest” stencil from r candidate

stencils to approximate wi+1/2. In the case of r = 3, the stencil Sk, where k ∈ [0, 2],

shown in Figure 3.3, happens to be chosen as the ENO interpolation stencil, the

rth-order ENO approximation of wi+1/2 to produce

wk = qrk (wi+k−r+1, ..., wi+k) (3.16)

where

qrk (g0, ..., gr−1) =
r−1∑
l=0

ark,l gl (3.17)

Here ark,l, 0 ≤ k, l ≤ r− 1, are constant coefficients, which are provided in Table 3.1.

Using the smoothest of the rth stencil would be desirable near a discontinuity, but in

smooth regions, information from all stencils can be used in the final solution. Thus,

in smooth regions, it would be desirable to combine the ENO stencils in a manner

that will generate a higher than r order solution. As shown in [48], one can use all

of the r candidate stencils, which all together would contain (2r − 1) grid values of
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wi+1/2 to give a (2r − 1)th-order approximation of w

wk = q2r−1
r−1 (wi−r+1, ..., wi+r−1) (3.18)

which is the solution of a (2r − 1)th-order upstream central scheme. Since high

order upstream central schemes (in space), combined with high order Runge-Kutta

methods (in time) are stable and dissipative under appropriate CFL numbers, they

are convergent. Using this fact, one can now use the (2r − 1)th-order upstream

central scheme in smooth regions and the rth order ENO scheme near discontinuities.

As shown in Equation 3.16, each of the stencils can approximate wi+1/2. If the stencil

is smooth, an rth order approximation of the stencil can be recovered, but if the stencil

is discontinuous, a less accurate or inaccurate approximation would be recovered. So

WENO assigns a weight, ω̂k, to each of the candidate stencil Sk, where k ∈ [0, r − 1],

and uses these weights to combine the r different approximations to obtain the final

approximation of the solution as:

wi+1/2 =
r−1∑
k=0

ω̂kq
r
k (wi+k−r+1, ..., wi+k) (3.19)

where qrk is defined in Equation 3.17. To achieve essentially non-oscillatory properties,

WENO requires that the weights adapt to the relative smoothness of w. Discontinu-

ous stencils contributions should be assigned weights of zero. In the smooth regions

the weights should be adjusted so the upstream central scheme, Equation 3.18, is

recovered.

In the present study, the 5th order WENO(WENO5) scheme (r = 3) is utilized
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as prescribed by Jiang and Shu in [45]. The stencils, Sk, are calculated as:

S0(wi−2, wi−1, wi) = 1
6
(2wi−2 − 7wi−1 + 11wi)

S1(wi−1, wi, wi+1) = 1
6
(−1wi−1 + 5wi + 2wi+1)

S2(wi, wi+1, wi+2) = 1
6
(2wi + 5wi+1 − 1wi+2)

(3.20)

And the right solution is stencils, SR
k are calculated as:

SR
0 (wi+3, wi+2, wi+1) = 1

6
(2wi+3 − 7wi+2 + 11wi+1)

SR
1 (wi+2, wi+1, wi) = 1

6
(−1wi+2 + 5wi+1 + 2wi)

SR
2 (wi+1, wi, wi−1) = 1

6
(2wi+1 + 5wi − 1wi−1)

(3.21)

The smoothness of each stencil is then calculated as:

IS0 = 13
12
(wi−2 − 2wi−1 + wi)

2 + 1
4
(wi−2 − 4wi−1 + 3wi)

2

IS1 = 13
12
(wi−1 − 2wi + wi+1)

2 + 1
4
(wi−1 − wi+1)

2

IS2 = 13
12
(wi − 2wi+1 + wi+2)

2 + 1
4
(3wi − 4wi+1 + wi+2)

2

(3.22)

The smoothness of each stencil for the right solution is then calculated as:

ISR
0 = 13

12
(wi+3 − 2wi+2 + wi+1)

2 + 1
4
(wi+3 − 4wi+2 + 3wi+1)

2

ISR
1 = 13

12
(wi+2 − 2wi+1 + wi)

2 + 1
4
(wi+2 − wi)

2

ISR
2 = 13

12
(wi+1 − 2wi + wi−1)

2 + 1
4
(3wi+1 − 4wi + wi−1)

2

(3.23)

We can now calculate the new weights, ω̂′
k, based on the smoothness, ISk, and

the optimal weights, ω̂opt
k , which are defined as ω̂opt = ( 3

10
, 6
10
, 1
10
) for approximation

of w by using the procedure from [45],

ω̂′
k =

ω̂opt
k

(ε+ ISk)2
(3.24)

where ε = 10−6 is there to guarantee non-singular behavior. These new weights, ω̂′
k,

are then normalized to become the final WENO weights:
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ω̂k =
ω̂′
k∑2

z=0 ω̂
′
z

(3.25)

where
∑

k ω̂k = 1. The weighted solutions from each stencil are then summed, in the

same manner as Equation 3.18, to form our WENO5 approximated solution:

wi+1/2 =
2∑

k=0

ω̂kq
5
k (3.26)

After at characteristics at all of the cell interfaces are calculated, the charac-

teristics are then projected back to real space using Equation 3.15 then the final

flux at the cell interface, Fi+1/2, is determined by Equation 3.12 using the updated

approximations to the conserved variables.

3.4.2 Monotonicity Preserving (MP) Schemes

The Monotonicity Preserving (MP) scheme, first introduced by Suresh & Huynh[50],

uses a high order spatially convergent reconstruction of the interface, the original

value, then limits this solution in order to obtain the final interface value. We will

adopt the notation of the previous section and drop the “L” subscript for solutions

at the face. For the 5th order MP scheme (MP5), which will be used throughout the

present study, the original value, wOR
i+1/2, is given as:

wOR
i+1/2 = (2wi−2 − 13wi−1 + 47wj + 27wi+1 − 3wi+2) /60 (3.27)

To find the MP5 solution, a few constraints must be satisfied. The first constraint

is monotonicity-preservation, which Suresh & Huynh [50] define as the upper limit,

wUL = wi + α(wi − wi−1) (3.28)
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where α = 2, represents a parabolic reconstruction. The second constraint, accuracy-

preserving, is accomplished by bounding the solution with the median and large cur-

vature solutions. The median (denoted by superscript “MD”) value at the interface,

xi+1/2, is given by

wMD = wAV − 1

2
dMD
i+1/2 (3.29)

While the large curvature (denoted by superscript “LC”) value at the interface is

given by

wLC = wi +
1

2
(wi − wi−1) +

β

3
dLCi−1/2 (3.30)

where β = 4, wAV is the average solution, di is the curvature, and dLCi+1/2 is the

minmod approximation of the curvature at the zone boundary, all of which are

defined as follows:

wAV = 1
2
(wi + wi+1)

di = wi−1 + wi+1 − 2wi

dMM
i+1/2 = minmod (di, di+1)

(3.31)

The superscript “MM” indicates the use of a minmod function. Suresh & Huynh[50]

recommended the use of a slightly more restrictive curvature measure than dMM
i+1/2,

which is given by:

dM4
i+1/2 = minmod (4di − di+1, 4di+1 − di, di, di+1) (3.32)

For the MP5 scheme dMD
i+1/2 = dLCi+1/2 = dM4

i+1/2. Now that the mechanisms for the two

constraints, monotonicity-preserving and accuracy-preserving, have been stated, the

minimum and maximum value of the solution, wMIN and wMAX , respectively, are

given by:

wMIN = max
[
min(wi,min(wi+1, w

MD)),min(wi,min(wUL, wLC))
]

wMAX = min
[
max(wi,max(wi+1, w

MD)),max(wi,max(wUL, wLC))
] (3.33)
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The solution at the face, wi+1/2, can now simply be expressed as:

wi+1/2 = median
(
wOR

i+1/2, w
MIN , wMAX

)
(3.34)

The 5th order convergent Monotonicity Preserving WENO (MW5) scheme by

Balsara & Shu [51], which is based on the MP5 scheme, has the smooth solution

of WENO5, but is strictly monotonicity-preserving near discontinuities. Balsara &

Shu were able to demonstrate that the solutions to ideal MHD simulations were far

superior to that of MP5 and WENO5. The form of the MW5 solution is the same

MP5, Equation 3.34, but the key difference is in how MW5 is used to determine the

original value, wOR, and the curvature at the median and large curvature values,

dMD and dLC , respectively. By using the WENO stencils for r = 3, Equation 3.20

with WENO coefficients from Table 3.1, and the optimal weights, the MW5 original

value, wOR, is recovered:

wOR = (6wi−2 − 27wi−1 + 65wi + 17wi+1 − wi+2) /60 (3.35)

In an attempt to filter out extremal features with small domains of support, while

keeping extremal features with large domains of support intact, dMD
i+1/2 = dLCi+1/2 =

dM4X
i+1/2, where

dM4X
i+1/2 = minmod (4di − di+1, 4di+1 − di, di, di+1, di−1, di+2) (3.36)

3.4.3 Advection-Diffusion-Reaction (ADER) Schemes

The Advection-Diffusion-Reaction (ADER) schemes of Titarev & Toro [52] utilize

high order spatial derivatives calculated by the underlying scheme to generate the
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temporal derivatives using the Cauchy-Kovalevskaya procedure:

∂tw = −λ∂xw

∂ttw = λ2∂xxw

∂tttw = −λ3∂xxxw
...

∂
(k)
t w = (−λ)k∂

(k)
x w

(3.37)

Where λ is the characteristic wave speed. With the high order temporal derivatives

generated from Equation 3.37, a simple Taylor series expansion is performed to ac-

quire a higher order temporally and spatially convergent scheme. But first, we must

take the temporal series expansion at the interface,

wi+1/2 = w̃ +
m−1∑
k=1

∂
(k)
t w̃

τ k

k!
(3.38)

Where τ is the time step size and w̃ = w(xi+1/2, 0
+) is the approximation of the

solution at the interface from the underlying scheme. In the present study, we wish

to achieve 3rd order convergence in time, so we will start from Equation 3.38 with

m = 3 to give,

wi+1/2 = w̃ + ∂tw̃τ + ∂ttw̃
τ 2

2
(3.39)

By performing the Cauchy-Kovalevskaya procedure on Equation 3.39, the solution,

wi+1/2, will become a function of the time step size and spatial derivatives of the

approximate solution as follows:

wi+1/2 = w̃ − λ∂xw̃τ + λ2∂xxw̃
τ 2

2
(3.40)

Equation 3.40 will serve as the general form of the temporally 3rd order convergent

ADER (ADER3) scheme. Since the expensive Runge-Kutta time integration steps

56



are no longer required, ADER schemes are extremely efficient and well suited for

parallel computation.

By combining the 5th order spatially convergent WENO5’s reconstruction to cal-

culate the approximate solution and its spatial derivatives, w̃ and ∂
(k)
x w̃, respectively,

with the 3rd order temporally convergent ADER3, we form the 3rd order temporal

and 5th order spatial convergent ADER-WENO (AW5) scheme [53]. At discontinu-

ities, ∂
(k)
x w̃ = 0 ∀ k > 1 is satisfied in order to prevent spurious oscillations.

3.5 Point-Implicit Euler

The finite rate kinetic systems in the present study are extremely stiff. When solving

a stiff ODE, it is often beneficial to solve the problem implicitly. The stiff chemical

kinetics ODEs will be expressed in the form of Equation 2.3:

dQ

dt
= Ω̇kinetic (3.41)

whereQ and Ω̇kinetic are defined by Equation 2.16. The 1st order point-implicit Euler

will be utilized to solve problems of this particular form. First, let us discretize the

time into uniform intervals of size Δt and denote tn = t0 and tn+1 = t0 +Δt. Upon

discretization, a Taylor series expansion can be performed on Equation 3.41 and is

expressed as follows:

ΔQ
Δt

= Ω̇
n+1

ΔQ
Δt

= Ω̇
n
+ ∂

∂t
Ω̇

n
Δt

ΔQ
Δt

= Ω̇
n
+ ∂

∂Q
Ω̇

n ∂
∂t
QΔt

ΔQ
Δt

= Ω̇
n
+ ∂Ω̇

n

∂Q
ΔQ

(3.42)
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Then we shall proceed and solve for the change in the conserved variables, ΔQ, and

arrive with the following form:

ΔQ =

(
I− ∂Ω̇

n

∂Q
Δt

)−1

Ω̇
n
Δt (3.43)

From here we arrive at the solution to our implicit formulation as:

Qn+1 = Qn +

(
I− ∂Ω̇

n

∂Q
Δt

)−1

Ω̇
n
Δt (3.44)

This can also be expressed in the operator form: Qn+1 = LchemQn, where the oper-

ator is defined as:

Lchem = 1 +

(
I− ∂Ω̇

n

∂Q
Δt

)−1
∂Ω̇

n

∂Q
Δt (3.45)

3.6 Spatial-Implicit Euler

Diffusive MHD transport will often have much stricter explicit time step restrictions,

Equation 3.8, than that of convective transport, Equation 3.4. Since the maximum

allowable explicit diffusive time step is determined by Δt ≤ 0.5Δx2σminμ0, it becomes

apparent that as σ → 0 then Δt → 0. This can become quite cost prohibitive, so in

order to ensure stability with a non prohibitive time step, an implicit time marching

scheme is utilized.

Before we can cast the diffusive MHD transport into an implicit formulation,

we must start from the magnetic diffusion flux formulation of the RHS, Equation

2.34, and define the magnetic field diffusion Jacobian, Aν , for the dimensionally split
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magnetic diffusion as
∂Q

∂t
=

∂

∂x

(
Aν

x

∂Q

∂x

)
(3.46)

where the magnetic field diffusion Jacobian, Aν
x = ∂Fν

x

∂Q
,

Aν
x =

1

μ0σ

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

−Bx

μ0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Assuming a one-dimensional discretization on a uniformly-spaced grid, the spatial

derivatives can be approximated by finite-differences and the subscript in Aν
x will be

ignored, thereby reducing the PDE to a system of ODE’s,

dQi

dt
=

1

Δx2

(
Aν

i+ 1
2
Qi+1 − (Aν

i+ 1
2
+ Aν

i− 1
2
)Qi − Aν

i− 1
2
Qi−1

)
(3.47)

the system of equations can be written in matrix notation as

∂ 	Q

∂t
= Φ̃	Q (3.48)

where Φ̃ is a tridiagonal matrix and 	Q is the spatial vector of the conserved element

array,

Φ̃ =
1

Δx2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .

−Aν
i− 1

2

(1 + Aν
i− 1

2

+ Aν
i+ 1

2

) −Aν
i+ 1

2

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 	Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

Qi−1

Qi

Qi+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.49)
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Now, we can determine the implicit formulation by evaluating the RHS of Eqn.

3.48 at time t+Δt,

	Qn+1 = 	Qn +Δt Φ̃ 	Qn+1 (3.50)

By applying backwards Euler to Equation 3.50, one can recover the operator form,

	Qn+1 = Ldiff
α

	Qn, where the MHD diffusion matrix operator for the α-direction is

Ldiff
α =

(
1−ΔtΦ̃α

)−1

(3.51)

In order to apply the diffusive MHD transport in all directions, one might perform

the following operation:

Qn+1 = Ldiff
x Ldiff

y Ldiff
z Qn (3.52)

Upon inspection of Equation 3.49, Ldiff is merely the inverse of a tridiagonal

system of equations. Rather than applying a scheme with a relatively high computa-

tion cost, i.e. GMRes or Gaussian Elimination, one can exploit the fact the system

is tridiagonal and implement Thomas’ Algorithm, which is discussed in more detail

in Appendix F.1.

The diffusive MHD operators, Ldiff
α , use line relaxation to proceed in time. If

the grid and fluid properties, i.e. conductivity, grid resolution, etc., are not spa-

tially uniform the diffusive MHD transport will have different time scales for each

directional sweep. When this occurs, it becomes necessary to split a given operator,

Lx, in time using the Strang operator splitting technique demonstrated in Section

3.1. The superscript ‘diff’ has been discarded for the remainder of this section. One

permutation of applying multiple spatial operators to a generic 2D diffusive MHD

problem would go as follows:

Qn+1 = LΔt/2
x LΔt

y LΔt/2
x Qn (3.53)
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which is illustrated in Figure 3.4(a). In order to avoid developing a bias toward a

particular direction, after applying Equation 3.53 one should use the following:

Qn+2 = LΔt/2
y LΔt

x LΔt/2
y Qn+1 (3.54)

which is illustrated in Figure 3.4(b). A similar permutation can be performed when

solving a 3-D diffusive MHD problem.
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r k l = 0 l = 1 l = 2

2 0 -1/2 3/2

1 1/2 1/2

3 0 1/3 -7/6 11/6

1 -1/6 5/6 1/3

2 1/3 5/6 -1/3

Table 3.1: WENO Coefficients, ark,l

t

Q

tn tn+1

Qn+1

Lchem

Lconv
ΔQconv + ΔQchem

Figure 3.1: Operator splitting of two generic operators, Lchem & Lconv.
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t

Q

tn tn+1

Lchem

Lconv

Qn+1

Q̃

(a)

t

Q

tn tn+1

Lconv

Lchem
Qn+1

Q̃

(b)

Figure 3.2: Demonstration that with Strang splitting coupled operators, the ordering

of the operators can significantly change the solution.

i − 2 i − 1 i i + 1 i + 2

S0 S1 S2

i + 1
2

Figure 3.3: WENO stencil for r = 3.
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t

Q

tn tn+1

Lx

Ly

Lx

Qn+1

Q̃(0)

Q̃(1)

(a)

t

Q

tn+1 tn+2

Ly

Lx

Ly

Qn+2

Q̃(0)

Q̃(1)

(b)

Figure 3.4: Strang operator splitting in time for three operations illustrated with

different ordering of the operators, Lx and Ly.
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CHAPTER 4

Verification of Numerical Schemes

The numerical schemes used in the present study must be validated and verified to

ensure there accuracy and proper usage. The 1-dimensional, 2-dimensional, and 3-

dimensional forms of the hydrodynamic and magnetohydrodynamic governing equa-

tions assume the form of Equation 2.1:

∂Q

∂t
+∇n · F = Ω̇

For the 1-D subset of the governing equations, the variation in the y- and z-

dimensions are set to zero, ∂
∂y

≡ 0 and ∂
∂z

≡ 0, respectively. While in the 2-D subset

of the governing equations, there is no variation in the z-direction, ∂
∂z

≡ 0.

4.1 Inviscid Hydrodynamics

The hydrodynamic test cases will show that the physical wave (acoustic and entropy)

speeds present in the simulation are properly captures and that the approximate

Riemann solution matches the proper jump conditions in the event of a shock. In

the hydrodynamic limit the conserved variables, Q, and flux, F, are expressed as
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Equation 2.5:

Q =

⎛
⎜⎜⎜⎝

ρ

ρu

E

⎞
⎟⎟⎟⎠ F =

⎛
⎜⎜⎜⎝

ρun

ρu · un + Pn

(E + P ) un

⎞
⎟⎟⎟⎠

4.1.1 Sod’s Shock Tube

There are a few classic test cases performed utilizing our Riemann solvers, in order

to test their ability to resolve shocks, contact discontinuities, and rarefactions as well

as the interactions of these structures. The first test case was introduced by Sod [54],

known presently as Sod’s shock tube. We will adopt the same initial and boundary

conditions. The left and right states are

(ρL, ux,L, PL) = (1 kg/m3, 0m/s, 1Pa) x < 0

(ρR, ux,R, PR) = (0.125 kg/m3, 0m/s, 0.1Pa) x > 0
(4.1)

where the adiabatic index, γ ≡ 1.4, unless otherwise stated, and over a domain

x ∈ (−5, 5]mm. Figure 4.1(a) shows the solution for the schemes at t = 200 μs

which contains a single shock, contact discontinuity and rarefaction. The figure

clearly shows that all of the schemes used resolved the problem reasonably well

compared to the exact solution. Figure 4.1(b) illustrates MW5 solution converging

to the exact solution at the contact discontinuity as Δx is decreased.

4.1.2 Hydrodynamical Interacting Blast Wave Problem

Blast waves are generally described as strong and rapid release of energy which are

often characterized by regions containing drastic temperatures and pressure rises.

For the second test of our 1D hydrodynamic test problems, we ran the interacting
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blast wave problem which was first proposed by Woodward and Collela [55]. The

problem consist of the left, middle, and right initial states, L, M, and R respectively,

which are as follows:

(ρL, ux,L, PL) = (1, 0, 103) x < 0.1

(ρM , ux,M , PM) = (1, 0, 10−2) 0.1 < x < 0.8

(ρR, ux,R, PR) = (1, 0, 102) x > 0.8

(4.2)

where x ∈ (0, 1]. Figure 4.2 shows the density profiles at t = 38 seconds using

the MP5, AW5, and MW5 schemes with greater detail in Figure 4.3. While all

of the schemes resolve the shocks at x ≈ 0.65&0.87 reasonably well, the contact

discontinuities at x ≈ 0.75&0.8 are slightly better resolved by MP5. None of the

schemes used artificial compression methods.

4.1.3 Shock-Entropy Wave Interaction

In the last of our 1-D hydrodynamic test cases, we wish to test our numerical schemes

ability to resolve smooth flow disturbances which is of particular interest because

of the nature of the problems in the present study. The Shu-Osher problem [56]

has been extensively used to simulate a Mach 3 shock wave interacting with an

oscillatory density disturbance which generates a flow field with a combination of

smooth structures and discontinuities. The initial conditions are given for the left

and right state as follows:

(ρL, ux,L, PL) = (3.857143, 2.629369, 10.33333) x < 0.8

(ρR, ux,R, PR) = (1 + 0.2sin(5πx), 0, 1) x > 0.8
(4.3)

where x ∈ (−1, 1]m. From the density profile in Figure 4.4(a) at t = 360ms, one

can see that three schemes resolved the entropy disturbances quite well. Upon closer
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inspection, Figure 4.4(b) clearly shows that while AW5 was slightly diffused and

MW5 slightly amplified, MP5 was clearly able to resolve the transient entropy waves

the best.

4.1.4 Shock Diffraction Down a Backward Facing Step

The next test problem describes the diffraction of a Mach 2.4 shock down a backward

facing step[57]. The strong rarefaction generated by the diffraction at the 90o corner

often results in numerical errors described by over-expansion and negative pressure

for many Riemann solvers[58]. The problem is simulated using a resolution of Δx =

Δy = 1
1024

with the MW5 solver. The numerical simulation is shown side-by-side

with the experimental images in Figure 4.5. The numerical solution is presented

using a Schlieren-type plot as prescribed by [58] which uses density gradients in an

analogous way to index of refraction gradients, which makes it ideal for comparison

with experimental images. The figure shows that the MW5 scheme was able correctly

reproduce the flow features in the region of the rarefaction.

4.1.5 Rayleigh-Taylor Hydrodynamic Instability

In the next test, a heavy fluid is supported by a lighter fluid in a gravitational field,

or equivalent, which accelerates the heavier fluid into a lighter fluid. This condition

is unstable once the interface between the two fluids is perturbed. The instability is

known as the Rayleigh-Taylor(RT) instability. Earlier analytical investigations date

back to the detailed analysis given by Chandrasekhar[59].

In the initial configuration, two fluids with a prescribed density ratio (ρL/ρU = 2)

are left to evolve between two planes (y = -1 m and y = +1 m), with gravity oriented
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in the upward direction (g = {0,+1}T ). The boundaries are adiabatic solid walls.

The remainder of the fluid initial conditions above and below the diaphragm, U & L

respectively, are found in Table 4.1. The solutions produced by the MP5, AW5, and

MW5 scheme were compared for this problem against the test solution at various

times in Figures 4.6-4.9. From these figures, it becomes quite clear that sharp features

and rolled up vortices in the MW5 solution are far superior to that of the solutions

produced by MP5 and AW5.

4.2 Ideal Magnetohydrodynamics(MHD)

The ideal MHD test cases will demonstrate that the physical waves (entropy, fast &

slow magneto-acoustic, and Alfvén) are properly captured under various configura-

tions by the present schemes.

4.2.1 1D MHD Shock Tube Problems

The Brio-Wu problem [60] was used to ensure the numerical scheme sufficiently

captured all of the important features, ie, a contact discontinuity, fast shock, fast

rarefaction, compound wave, and slow shock. The initial conditions are analogous

to Sod’s shock tube problem where the initial left and the right states are as follows:

(ρl, ux,l, uy,l, uz,l, Bx,l, By,l, Bz,l, Pl) = (0.1, 0, 0, 0, 0.75,−1, 0, 1) x < 0

(ρr, ux,r, uy,r, uz,r, Bx,r, By,r, Bz,r, Pr) = (1, 0, 0, 0, 0.75,+1, 0, 10) x > 0
(4.4)

where γ ≡ 2 and x ∈ (−1, 1]. Figure 4.10 - 4.15 show the distributions of various

fluid properties at the solution time, t = 0.1. Figure 4.11(a) shows a zoom in

of the compound wave at x ≈ −.03m. From this figure, it is clear that the MW5
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scheme is able to resolve the major features (compound wave, fast & slow rarefaction)

better than MP5 & AW5. All of the schemes (MP5, AW5, & MW5) resolve the

contact discontinuity fairly well, shown in Figure 4.11(b).The undershoot observed

in the velocity profile, Figure 4.12(a), at x ≈ 0.35 m is a well documented feature

in literature for higher order MHD schemes at magneto-sonic points; Jiang and Shu

[61] suggest performing the test problem in a moving reference frame in order to

suppress the oscillations.

4.2.2 Orszag-Tang Problem

Various 2D MHD test cases were performed to ensure that the solver correctly cap-

tured all physical waves and to ensure the solution remains divergence free, ∇·B ≡ 0.

The divergence cleaning procedure used when performing MHD simulations is given

in Appendix C. The first numerical test case is that of the Orszag-Tang vortex prob-

lem, first introduced by Orszag & Tang[62]. This is a well-known model problem for

testing the transition to supersonic 2D MHD turbulence. The initial conditions of

the problem are given by:

(ρ, ux, uy, Bx, By, P ) = (2.778,−sin(y), sin(x),−sin(y)
√
μ0, sin(2x)

√
μ0, 1.667)

(4.5)

where γ ≡ 5
3
. The problem is set on a periodic domain with the dimensions x : y ∈

[0, 2π)m : [0, 2π)m. Figure 4.16 shows the temperature distribution of the solutions

at t = 3s. Although the images illustrated appear similar, upon further inspection

the flow features in Figures 4.16(a) & (c) are sharper than those in Figure 4.16(b).
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4.2.3 Balsara’s Rotor Problem

The following test, which was original introduced by Balsara & Spicer[63], consists of

the propagation of strong torsional Alfvén waves into an ambient fluid. The problem

consists of a dense, rapidly spinning cylinder of fluid(the rotor) surrounded by a

light, stationary fluid (ambient fluid). Because there is no diffusive transport in this

problem, the two fluids are connected by an initially uniform magnetic field. The

rapidly spinning rotor causes torsional Alfvén waves to propagate into the ambient

fluid, which will lead to a decrease of angular momentum in the rotor. The magnetic

field is strong enough that as it wraps itself around the rotor, the increased magnetic

pressure will compress the rotor into an oblong shape. Balsara & Spicer applied a

slight taper to the initial density and velocity of the rotor as to avoid generating

strong start-up transient from the computational scheme. The computation domain

is described by x : y ∈ [0, 1] : [0, 1] and the initial conditions are described in Table

4.2.

At the solution time, t = 0.295 s, MW5 and MP5 shown in Figures 4.17 & 4.18,

respectively, agree quite well with the results of Balsara & Spicer[63] using CFL =

0.3, while AW5 is unstable at this CFL number. Figure 4.19 illustrates that AW5

can remain stable and resolve Balsara’s rotor problem quite well by reducing the

CFL to 0.15.

4.2.4 Rayleigh Taylor MHD Instability

Equally as important as the stability of the chemical processes is that of the stability

of the MHD. As previously demonstrated in Section 4.1.5, Rayleigh-Taylor Instabil-

ities (RTI) can arise from infinitesimal disturbances in amplitude and grow because
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of the gradient in the applied force, e.g., a buoyant force. In [59], Chandrasekhar an-

alytically demonstrated RTI with a uniform tangential magnetic field in both fluids,

where the stability growth rate is:

n2 = gk
ρ2 − ρ1
ρ2 + ρ1

− B2k2cos2 θ

2π(ρ2 + ρ1)
(4.6)

where k is the wave number, n is the growth rate, and θ is the angle between B

and k. The critical strength of a magnetic field to suppress instability of a mode of

wavelength λ is:

Bc =

√
gλ(ρ2 − ρ1)

cos θ
(4.7)

Similarly, the critical wavelength for a given strength of a magnetic field can be

expressed as:

λc =
B2cos2 θ

g(ρ2 − ρ1)
(4.8)

where λ < λc are suppressed.

As specified by Remacle et al.[64], a domain with dimensions x : y ∈ [0, 0.25]m :

[−0.5, 0.5]m is enclosed by reflective, adiabatic walls. The heavy, upper fluid is

separated from the light, lower fluid at y = 0.01cos(8πx). The acceleration due to

gravity is g = {0,−1}T . The initial conditions conditions of the fluid are listed in

Table 4.1. Figures 4.20(a) - (c) show the solution of the density distribution of MW5,

MP5, and AW5, respectively, at t = 2 s with grid resolution Δx = Δy = 1
400

m. Due

to the lack of rolled up vortices in Figure 4.20(c), AW5 cannot properly resolve the

instability of the current problem. Thus, only MW5 and MP5 will be used in the

next portion of the test.

The suppression of the instability growth with tangential magnetic field strengths

of Bx = 0, 0.2Bc, 0.5Bc, and 0.8Bc at t = 2 s using MW5 & MP5, respectively, is
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illustrated in Figures 4.21 & 4.22 . The illustrations support the well established

theory of Chandrasekhar[59] that there is a critical tangential magnetic field that

will suppress a perturbations growth in this particular test case. A normal magnetic

field with the strengths By = 0.5Bc, 1.5Bc, and 2Bc are illustrated at t = 2 s in

Figures 4.23 & 4.24. The normal magnetic field did not have a significant affect on

the growth of the instabilities until a larger field was applied relative to the tangential

field strength, which is confirmed by Jun et al.[65]. Additionally, Jun et al. show

that the growth of the instability in the nonlinear regime is enhanced by the normal

field up to a certain field strength.

4.3 Two-Temperature(2T) Model

When there is significant ionization due to shocks or non-isentropic processes, the

electron temperature, Te, is adiabatic and must relax to the translational temperature

of the heavy particles, Th. Next, we present a 1D test case of a Mach 10 fully

ionized plasma of argon passing through a normal shock. Figure 4.25(a) illustrates

the electron and heavy particle temperatures when they are conserved separately

and are not allowed to relax toward equilibrium, while Figure 4.25(b) illustrates the

electron and heavy particle temperatures relaxing via electron-ion collisions toward

equilibrium. In these figures we see that MP5 is able properly conserve electron

entropy as well relax to the correct equilibrium temperature, Te = Th = 7800K.
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upper part lower part

ρ 2 1

P 2− 2y 2− y

ux εxsin(8πx)cos(πy)sin
τ−1(πy) same as upper part

uy −εycos(8πx)sin
τ (πy) same as upper part

Table 4.1: RTI problem hydrodynamic initial conditions as specified by Remacle et

al.[64] where τ = 6, M0 = 0.1, εy = M0

√
γ/2, and εx = −εyτ/16.

r < r0 r0 < r < r1 r > r1

ρ 10 1 1 + 9f

P 0.5 0.5 0.5

ux −v0(y−y0)
r0

−f v0(y−y0)
r0

0

uy
v0(x−x0)

r0
f v0(x−x0)

r0
0

Table 4.2: Balsara’s rotor problem initial conditions as specified by Tóth[66] with a

magnetic field Bx = 2.5/μ0, where r0 = 0.1, r1 = 0.115, f = r1−r
r1−r0

, v0 =, v0 = 1,

(x0, y0) = (0.5, 0.5), and γ = 5/3.
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Figure 4.1: Density distribution of Sod’s[54] 1D Shock Tube problem at runtime =

2 s and CFL=0.4, where (a) compares the MP5, AW5, and MW5 solutions with

Δx = 100μm and (b) is an expanded view near the contact discontinuity showing

the convergence of MP5 with successively reduced grid size Δx.
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Figure 4.2: Density distribution of Woodward and Collela’s[55] 1D Blastwave prob-

lem using MP5, AW5, and MW5, Δx = 2.5× 10−3m, CFL = 0.4, runtime = 38ms.
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Figure 4.3: Density distribution of the contact discontinuities for the 1D Blastwave

problem [55] using MP5, AW5, and MW5, Δx = 2.5× 10−3m, CFL = 0.4, runtime

= 38ms, where (a) and (b) are expanded views near contact discontinuities of Figure

4.2.
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Figure 4.4: Density distribution of the 1D Shock-Entropy Interaction problem [56]

using MP5, AW5, and MW5, Δx = 6.67 × 10−3m, CFL = 0.4, runtime = 360ms,

where (a) is the wide view and (b) is an expanded view near an entropy distrubance.
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Figure 4.5: Mach 2.4 flow over a backward facing step solution (left) using MW5

with Δx = Δy = 1
1024

m compared to the experimental results (right) [57].
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Figure 4.6: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 0.75s, where Δx = Δy = 1
800

m (For High Resolution, MW5 was used

with Δx = Δy = 6.25× 10−4m), min max.
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Figure 4.7: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 1.50s, where Δx = Δy = 1
800

m (For High Resolution, MW5 was used

with Δx = Δy = 6.25× 10−4m), min max.
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Figure 4.8: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 2.25s, where Δx = Δy = 1
800

m (For High Resolution, MW5 was used

with Δx = Δy = 6.25× 10−4m), min max.
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Figure 4.9: Density distribution for hydrodynamic Rayleigh Taylor Instability prob-

lem at t = 3.00s, where Δx = Δy = 1
800

m (For High Resolution, MW5 was used

with Δx = Δy = 6.25× 10−4m), min max.
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Figure 4.10: Density distribution of the Brio-Wu[60] problem using MP5, AW5 and

MW5, Δx = 2.5× 10−3m, CFL = 0.4, runtime = 100ms
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Figure 4.11: Density distribution for the 1D Brio-Wu[60] problem using MP5, AW5,

and MW5, Δx = 2.5 × 10−3m, CFL = 0.4, runtime = 100ms, which illustrate the

expanded views near the compound wave (a) and contact discontinuity (b) of Figure

4.10.
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Figure 4.12: Velocity distribution of the x-component for the 1D Brio-Wu[60] prob-

lem using MP5, AW5, and MW5, Δx = 2.5× 10−3m, CFL = 0.4, runtime = 100ms,

which (b) illustrates the expanded views near the trailing edge of the fast rarefaction

of (a).
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Figure 4.13: Velocity distribution of the y-component for the Brio-Wu[60] problem

using MP5, AW5 and MW5, Δx = 2.5× 10−3m, CFL = 0.4, runtime = 100ms
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Figure 4.14: Pressure distribution of the Brio-Wu[60] problem using MP5, AW5 and

MW5, Δx = 2.5× 10−3m, CFL = 0.4, runtime = 100ms
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Figure 4.15: By distribution of the Brio-Wu[60] problem using MP5, AW5 and MW5,
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Figure 4.17: The density, thermal pressure, Mach number, and the magnetic pressure

distributions at t = 0.295s for Balsara’s rotor problem. The solution was obtained

using MW5 with a grid resolution of Δx = Δy = 1
400

m and CFL = 0.3. The 30

contour lines are shown for the ranges 0.532 < ρ < 10.83 kg
m3 , .007 < P < 0.702Pa,

0 < |u|
cs

< 3.64, and 0.007 < B2

2μ0
< 0.702Pa, as prescribed by Tóth [66].
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Figure 4.18: The density, thermal pressure, Mach number, and the magnetic pressure

distributions at t = 0.295s for Balsara’s rotor problem. The solution was obtained

using MP5 with a grid resolution of Δx = Δy = 1
400

m and CFL = 0.3. The 30

contour lines are shown for the ranges 0.532 < ρ < 10.83 kg
m3 , .007 < P < 0.702Pa,

0 < |u|
cs

< 3.64, and 0.007 < B2

2μ0
< 0.702Pa, as prescribed by Tóth [66].
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Figure 4.19: The density, thermal pressure, Mach number, and the magnetic pressure

distributions at t = 0.295s for Balsara’s rotor problem. The solution was obtained

using AW5 with a grid resolution of Δx = Δy = 1
400

m and CFL = 0.15. The 30

contour lines are shown for the ranges 0.532 < ρ < 10.83 kg
m3 , .007 < P < 0.702Pa,

0 < |u|
cs

< 3.64, and 0.007 < B2

2μ0
< 0.702Pa, as prescribed by Tóth [66].
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Figure 4.20: Growth of instability without the presence of a magnetic field at t = 2s

for MW5, MP5, and AW5 where Δx = Δy = 1
400

m. Density distribution with 20

density contours between 1 2.
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Figure 4.21: The impact of the tangential magnetic field, Bx, on the growth of

instabilities at t = 2s where Δx = Δy = 1
400

m and Bc = 0.5T using MW5. Density

distribution with 20 density contours between 1 2.
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Figure 4.22: The impact of the tangential magnetic field, Bx, on the growth of

instabilities at t = 2s where Δx = Δy = 1
400

m and Bc = 0.5T using MP5. Density

distribution with 20 density contours between 1 2.
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Figure 4.23: The impact of the normal magnetic field, Bx, on the growth of insta-

bilities at t = 2s where Δx = Δy = 1
400

m and Bc = 0.5T using MW5. Density

distribution with 30 density contours between 1 2.
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Figure 4.24: The impact of the normal magnetic field, Bx, on the growth of insta-

bilities at t = 2s where Δx = Δy = 1
400

m and Bc = 0.5T using MP5. Density

distribution with 30 density contours between 1 2.
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without(b) Te relaxation where Δx = 1
500

m using MP5.
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CHAPTER 5

Simplified Approach for PDRIME Simulations

Now that the various numerical schemes have been validated, we first investigate

the performance of a PDRE flight configuration, and later the PDRIME, using a

simplified non-reactive model, Equation 2.5. In the simplification, we assumed that

all reactants (H2 and O2) in the combustion chamber have been consumed, leaving

just products (H2O) and the seeded Cesium. We also assumed that the detonation

has left the chamber. This model has been shown to replicate blowdown conditions

in a rocket nozzle reasonably accurately, as shown in Figure 5.1 from the work by

Cambier. Following Cambier’s blowdown model[67], we initialize the combustion

chamber with the post-combustion and post-detonation conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P̂0 = 100 atm

T̂0 = 3000K

ρ̂0 = P̂0

RT̂0

Rather than simulating the combustion chamber, the combustion chamber is mod-

eled as a “reservoir” whose conditions (P0, T0) temporally evolve as prescribed by

Cambier’s blowdown equations[67]:

P0 = P̂0[f(t)]
γ/(γ−1) (5.1a)
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ρ0 = ρ̂0[f(t)]
1/(γ−1) (5.1b)

T0 = T̂0[f(t)] (5.1c)

where f(t) = 1
1+νt

and ν is the blowdown frequency and is equal to 87.5 Hz for

this particular case. Now, by using the isentropic relations, we can determine the

conditions at the PDRE throat as a function of time. With this simplification, our

computational domain no longer needs to include the combustion chamber, this is

illustrated in Figure 5.2. Next, we assume that the back pressure, the atmospheric

pressure Patm, is sufficiently low, so that there is no back flow into the nozzle. Pres-

sures at the altitudes we are simulating are high enough that even with the expan-

sion in the nozzle, the nozzle exit pressure is greater than the atmospheric pressure,

Pexit > Patm. Because of the extremely high flight altitudes (altitude ≈ 15 − 20

km) , the PDRE performance does not have any significant variance with regard to

altitude.

Next, we extend this simplified model of the PDRE to the PDRIME with a

‘Magnetic Piston’. In this extension, we assume that if the temperature is greater

than 3000K; the conductivity is a constant non-zero value, in this particular case

σ = 1000mho/m in the nozzle and σ = 500mho/m in the bypass tube. The nozzle

impulse contribution is calculated the same way as the PDRE, while bypass tube

impulse contribution is calculated by integrating the Lorentz force over the cycle

duration, as follows:

Ibypass =

∫ t

0

(j×B)x dτ ≈
∫ t

0

σuBz(Kx − 1) dτ (5.2)
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where all variables have been previously defined. We also assumed a constant mag-

netic field for both the nozzle and bypass section of the PDRIME, as illustrated in

Figure 1.7. The configuration called ‘NG’ refers to the PDRE with energy extraction

in the nozzle (for use of the ‘nozzle generator’), so, as expected there is a drop in

impulse as shown in Figure 5.3. A promising concept postulated by Cambier[40]

involving the PDRE with ‘Magnetic Piston’ was also simulated, but due to the lack

of energy supplied to the ‘Magnetic Piston’ by the generator, this flight configuration

could not be effectively utilized. In Chapter 7, the true energy ‘cost’ of the chamber

piston will be investigated by exploring the nature of the ionized gas and chemical

kinetics subjected to the Lorentz force. We will now explore other PDRE flight con-

figurations which will build off of the PDRE with ‘NG’ concept in order to further

optimize the PDRE.

5.1 PDRIME with Bypass Configurations

There were multiple flight configurations as well as different flight condition tested.

Using the standard combustion chamber condition, nozzle, and nozzle generation

configuration we were able to test various configurations of the Bypass Tube. Figure

5.3 shows the performance of the standard PDRIME configuration under various

flight condition as they compare the performance of a PDRE, which we will refer to

as the baseline. With this configuration, there are some marginal performance gains

above the baseline case. The standard PDRIME utilizes a constant magnetic field,

which is active only if the fluid temperature is greater than 3000K and the fluid is

moving in the stream-wise direction. When activated, a constant magnetic field of

3T is applied to the applicable fluid.
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5.2 Temporal/Temperature Controllers of the Magnetic Field

We performed component evaluations for the various flight configurations with dif-

ferent assumptions. This involved examining the net energy consumed compared to

impulse gained or lost by a particular component of the flight configuration. During

the course of component performance evaluation, it was determined that an MHD

bypass accelerator, where a “piston” like acceleration was applied in the bypass sec-

tion as done for the magnetic chamber piston, was under-performing relative to the

nozzle which is shown in Figure 5.4. Zeineh[33] also saw the same under-performance

in his 2-D simulations. The bypass available energy, ΔEgen, is being applied to the

bypass over approx 0.1 ms within a relatively small volume, dV , wherein most of the

available energy is directed towards Joule heating rather than accelerating the fluid.

This leads to large temperature spikes and little impulse increase.

From E =
∫
cv dT + 1

2
ρv2 with introduction of Energy at constant volume

ΔEgen = cvΔT +
1

2
ρΔv2 (5.3)

We can see where and how the energy is being used in the bypass. ΔEgen is a fixed

amount of energy produced by the MHD generator in the nozzle. cvΔT represents the

amount of energy that is converted to internal energy, which for our simplified model

of constant heat capacity is represented by a rise in temperature. Lastly, 1
2
ρΔv2 ∝

ΔKE represents the amount of kinetic energy which is imparted upon the fluid, and

since energy is introduced at constant volume, ρ remains constant, so this change in

kinetic energy is directly related to our change in impulse, I ∝ ΔKE
1
2 . In order to

reduce the temperature spikes and thus increase the impulse, when applying MHD to

the bypass, one must regulate the ΔEgen available for use by the bypass accelerator.

To control this energy reintroduction, one must either control the conductivity of the
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fluid, σ, or the strength of the magnetic field, B, acting on the bypass. Since it is

impractical if not impossible to dynamically control the conductivity in the bypass,

we chose the latter.

Our first approach is to scale the maximum magnetic field in the bypass with

time, for which we prescribe a simple algorithm. First, the magnetic field is initially

zero until the initiation time, t0, when at least one grid cell in the bypass meets the

normal criteria for MHD accelerator: Ti > 3000K and ui > 0. The magnetic field is

then scaled with the maximum field applied, B0. The magnetic field in the bypass

is prescribed as follows:

B(t) =

⎛
⎜⎜⎜⎝

0 t < t0

Π(t) · B0 t0 < t < t0 +Δt

B0 t > t0 +Δt

⎞
⎟⎟⎟⎠ (5.4)

B0: Maximum Magnetic Field Strength

t0: time at which T > 3000K and u > 0

Δt: ramp up time

Π(t): Magnetic Field Scaling Factor

We ran a series of simulations incorporating this prescribed magnetic field, adjust-

ing both Π(t) and Δt as a means of “open loop” control. Our tests utilized three

different magnetic field scaling factors:

Π(t) = ( t−t0
Δt

) linear scaling where B ∝ t

Π(t) = ( t−t0
Δt

)
1
2 energy scaling (Energy ∝ B2), where B ∝ t

1
2

Π(t) = ( t−t0
Δt

)n power law scaling (n = 3) where B ∝ tn
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Figure 5.5 compares the evolution of these magnetic field scaling factors with time.

Figure 5.6 shows that the temporally varied bypass magnetic field with the “open

loop” control shown in Equation 5.4 has the same marginal performance improve-

ments performance as the standard bypass configuration. The optimal configuration

of the bypass magnetic field is dictated by the flight conditions which include flight

Mach number and altitude.

In our next approach, we return to the same problem of controlling the rate

at which energy is consumed by the bypass. It was previously stated, that it was

impractical to dynamically control the conductivity in the bypass, σ. When evalu-

ating the nature of the conductivity of a fluid in the current regime, Equation 2.30

shows the conductivity’s strong dependency on the temperature, T . Rather than

dynamically controlling the conductivity of the fluid, we modeled the behavior of an

‘ideally’ conductive fluid by prescribing its dependency to temperature, σ = σ(T ).

We wish to implement this “closed loop” controller in the bypass in order to scale

the magnetic field, Bi, with the sensible local temperature in the bypass, Ti. The

normal criteria for MHD acceleration are still utilized. The bypass magnetic field

“feedback” function is prescribed as follows:

B(T ) =

⎛
⎜⎜⎜⎝

0 T < Tmin

Θ(T ) · B0 Tmin < T < (Tmax − Tref )

B0 T > (Tmax − Tref )

⎞
⎟⎟⎟⎠ (5.5)

B0: Maximum Magnetic Field

Tmin: Minimum Temperature (3000K)

Θ(T ): Magnetic Field Scaling Factor
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Θ(T ) = ( T−Tref

Tmax−Tref
) linear scaling B ∝ T

Tref and Tmax are adjusted to optimize performance

The term “feedback” here is used in the sense that temperature is measured, and the

magnetic field is adjusted according to Equation 5.5. Figures 5.7 through 5.10 show

that the “closed-loop” controller in the bypass tube is able to match the performance

of the standard configuration at a flight altitude of 25km and Tmax < 8 × 103K.

But at other flight altitudes, this “closed loop” controller falls short. The B(T )

model is much more feasible for implementing into a physical system because of the

temperature dependency of many of the parameters that contribute to impulse from

the bypass accelerator, e.g., σ(T ) and B(T ).

5.3 PDRIME with 2D Bypass Configuration

There was further examination of the PDRIME with various configurations per-

formed in Zeineh[33] and Zeineh et al.[34]. In their study, Zeineh et al. found the

flight configuration of the PDRIME at altitudes 20, 25, and 30 km at relatively

low Mach numbers (M ≤ 5) had significant performance increases over the base-

line PDRE. Figures 5.11 through 5.13 show some of the performance gains of the

PDRIME at different altitudes with the optimal bypass section lengths(Lbypass = 3,

4, and 6 m) demonstrated in [34]. While the results of Zeineh’s multidimensional

simulations were quite promising, the effects of complex kinetics (i.e. hydrogen-air

chemistry and ionization process) were not rigorously investigated. The constant

conductivity assumption does not allow for the “closed loop” evolution of the con-

ductivity (i.e. Joule heating further ionizing fluid), therefore in Chapter 7 we will
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discuss and examine the effects of MHD when the conductivity is described more

accurately via Equation 2.27.
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Figure 5.1: Variation in impulse for a PDRE. Results are shown from a full quasi-1D

transient PDRE simulation and a cycle approximated by a constant volume reaction

and a blow-down period(from Cambier[67])
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Figure 5.2: Quasi 1D Computational Domain, where the Bypass and Nozzle inlet

and exit boundary conditions are shown
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Figure 5.3: Quasi 1D Performance: Impulse Loss in Nozzle Energy Generation with

H2O product
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Figure 5.4: Quasi 1D Component Performance: Bypass vs. Nozzle Impulse at M =

9 and Alt: 25km with H2O product
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Figure 5.5: Magnetic Field Strength, B, as a function of time, using various Magnetic

Field Strength functions, Π(t)
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Figure 5.6: PDRIME: effects of flight Mach number. Magnetic Field, B(t) ∼ t2
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Figure 5.7: PDRIME with Chamber Piston: effects of flight mach number. Magnetic

Field B(T ), Tref = 0K and Tmax = 6× 103K
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Figure 5.8: PDRIME: effects of flight mach number. Magnetic Field B(T ), Tref = 0K

and Tmax = 7× 103K
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Figure 5.9: PDRIME: effects of flight mach number. Magnetic Field B(T ), Tref = 0K

and Tmax = 8× 103K
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Figure 5.10: PDRIME: effects of flight mach number. Magnetic Field B(T ),

Tref = 0K and Tmax = 9× 103K
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Figure 5.11: PDRIME impulse per cycle at 20 km plot against various Mach numbers

and bypass area per unit depth. The chamber is initially seeded with 0.5% cesium

by number at an initial temperature of 3000 K. The bypass length is Lbypass = 3 m

and is seeded with 0.1% cesium by number. (from Zeineh et al.[34])
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Figure 5.12: PDRIME impulse per cycle at 25 km plot against various Mach numbers

and bypass area per unit depth. The chamber is initially seeded with 0.5% cesium

by number at an initial temperature of 3000 K. The bypass length is Lbypass = 4 m

and is seeded with 0.1% cesium by number. (from Zeineh et al.[34])
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Figure 5.13: PDRIME impulse per cycle at 30 km plot against various Mach numbers

and bypass area per unit depth. The chamber is initially seeded with 0.5% cesium

by number at an initial temperature of 3000 K. The bypass length is Lbypass = 6 m

and is seeded with 0.1% cesium by number. (from Zeineh et al.[34])
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CHAPTER 6

Detonation Stability Phenomena

This chapter was taken with slight modification from the article “Stability of flame-

shock coupling in detonation waves: 1D dynamics”, published in the journal Com-

bustion Science and Technology [68].

6.1 Ignition and Instabilities

Direct initiation of the 1D detonation and the ensuing instabilities are now exam-

ined, in part for fundamental understanding but also to establish a baseline against

which the effects of MHD may be compared in Chapter 7. In this study, a cham-

ber is filled with a stoichiometric mixture of H2 and air (temperature 300 K and

pressure 1 atm), and ignition is achieved by setting a region adjacent to an end-wall

of the simulated shock tube at high pressure (40 atm for most computations) and

temperature (1500 K), as a simulated spark. This direct initiation is preferable to a

deflagration-to detonation transition (DDT), since the latter is much more sensitive

to initial conditions and grid resolution, it requires inclusion of species diffusion, and

it requires a very long computational domain to reproduce both the DDT and the

subsequent evolution of the detonation. Nevertheless, even direct initiation is sen-

sitive to initial conditions and resolution. The requirements to achieve detonation
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ignition with the MP5 scheme include a grid cell size Δx of less than 50 μm and

a distributed simulated spark region (of length �spark ranging from 0.25 to 0.5 cm)

with sufficiently high pressure. For example, Figure 6.1(a) is an x-t diagram illus-

trating the pressure contours of a spark-ignited mixture with initial pressure 20 atm,

�spark = 0.25 cm, and grid size Δx = 50 μm, which does not achieve detonation. In

contrast, Figure 6.1(b) illustrates contours of the same mixture and grid resolution

but with a higher spark pressure, 50 atm, and larger region (�spark = 0.5 cm), which

does achieve detonation. The constraints on initial spark conditions can be related

to the concepts of minimum energy and kernel size for direct initiation [69]; similar

studies by Eckett et al.[20] and He & Karagozian[70] indicate there are both pressure

and temperature requirements for the spark. With an understanding of the range of

satisfactory kernel/spark sizes and pressures, we fix the spark conditions to consis-

tently achieve a rapid initiation, in order to remove the dependence of the long-term

dynamics on the initial conditions. For the remainder of the studies in this chapter,

the spark conditions are �spark = 0.25 cm, Pspark = 40 atm, and Tspark = 1500K.

The succesful detonation initiation event proceeds in two phases. First, the gas in

the spark region rapidly burns and increases the pressure, in a nearly constant-volume

combustion process. This high pressure generates a strong shock which propagates

into the unburnt mixture, which itself is ignited after a time delay and rapidly burns,

starting from the region closest to the spark. In a scenario described as the SWACER

mechanism [71], the combustion wave is amplified as it overtakes the leading shock,

and the coalescence of the two fronts leads to extremely high peak pressures for a

very short time. This event is easily identified in the trace of the peak pressure

versus time as shown, for example, in Figure 6.2, and is referred to hereafter as the

“re-explosion” event, the first explosion having taken place within the initial spark
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region. Two different grid sizes are used in Figures 6.2(a) and 6.2(b), Δx = 12.5

μm and 2.5 μm, respectively, using the MP5 scheme. A more detailed examination

of the dynamics for these two different grid sizes is shown in Figures 6.3 and 6.4, as

will be discussed below.

The high pressure of this re-explosion event initiates another strong shock, which

is followed, after an an induction length (�, measured in the reference frame of

the shock) by the combustion zone. This flame is initially strongly coupled to the

shock (� → 0) and the wave is strongly over-driven, i.e., its speed exceeds that of

the Chapman-Jouget (CJ) detonation. As the degree of overdrive decays and the

detonation approaches the CJ limit, instabilities begin to appear, as shown in Figure

6.2(a) after about 35 μs and in Figure 6.2(b) after about 25 μs.

These spark-ignited detonation simulations demonstrate the appearance of differ-

ent instability modes. For both sets of results in Figure 6.2, instabilities appear when

the detonation becomes close to the CJ condition, starting with a small-amplitude,

but high-frequency mode – hereafter referred to as the ‘HF’ mode. For the low-

resolution case in Figure 6.2(a), the transition to the high-frequency (HF) mode

occurs at a time of the order of 30− 35μs; this instability regime is shown in detail

in Figure 6.3(a). For the high-resolution case, Figure 6.2(b), the transition occurs

earlier, close to 25μs; this regime is shown in detail in Figure 6.3(b) for roughly

the same time period as in Figure 6.3(a). For both grid sizes, we observe that at

around 45 μs, there is a transition towards a lower frequency but high-amplitude

mode – referred to here as the ‘HA’ mode. This transition is more gradual in the

high-resolution case, with both modes coexisting during a period of time (between

approximately 44 and 48 μs), as shown in more detail in Figure 6.4(b). In the

low-resolution case of Figure 6.4(a), however, the behavior is less gradual and more
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chaotic. The contrast between these two profiles is striking; while a periodic signal

can still be detected in Figure 6.4(a), the characteristics and frequencies are both

very different. Besides the smoothness of the temporal waveforms of the high am-

plitude instabilities, we also note that a period-doubling in the high resolution case,

i.e., the HA signal has a dual oscillation (high-low pressures) which is not apparent

at lower resolution1. We note also that there are other manifest differences in the

specific dynamical features of these instabilities, e.g., in the appearance of noise in

the waveform after the re-explosion event (Figure 6.2(a)), which is eliminated for the

higher resolution case in Figure 6.2(b). Thus, it is clear that there can be significant

effects of the grid resolution on the dynamics of the instabilities. Furthermore, the

appearance of sharp features in the traces also suggests that special care must be

exercised in avoiding numerical procedures which can arbitrarily sharpen gradients,

as mentioned earlier.

There is no obvious “very high frequency” mode that arises after the re-explosion

event and before the initiation of the high frequency mode, as seen by Leung et

al.[17], in the well-resolved result in Figure 6.2(b). But if one explores in detail

the time regime after the re-explosion event, for grid sizes Δx of 2.5 μm and even

smaller, as shown in Figure 6.5, one does observe relatively low amplitude and very

high frequency oscillations, with frequencies and amplitudes dependent on the grid

resolution. To examine the origin of these low amplitude oscillations, the variation in

induction length as a function of time, determined from peaks in the concentration

of H atoms, may be explored for these different resolutions. A plot of induction

length as a function of time is shown in Figure 6.6(a), with an expanded view in

Figure 6.6(b) corresponding to the same time period as shown in Figure 6.5. The
1This was verified for longer time periods than shown; for clarity purposes, the extent of the

simulation results shown in the figures has been truncated.
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results in Figure 6.6 indicate that the amplitude of oscillations in induction length

corresponds to the grid size Δx, and moreover, the frequency of oscillation correponds

to the ratio of the CFL number here (0.4) to the sampling period (1 nanosecond).

Thus it appears that the very high frequency (and very low amplitude) oscillations

seen using complex kinetics merely correspond to numerical uncertainties associated

with the location of the peak pressure or peak in atomic hydrogen (mole fraction).

Because the re-explosion event is clearly identifiable, we can use this feature to

conduct a more detailed study of the effect of grid resolution. For example, one can

examine the variation of the measured time delay to this second explosion event,

texp, for the specific initial spark conditions noted previously. Here the uniform grid

spacing Δx is varied from 0.5 μm to 20 μm. Figure 6.7 illustrates how the time to

re-explosion for the MP5, AW5, and MW5 schemes varies with the grid resolution.

Since the AW5 & MW5 schemes are more diffusive than MP5, it is not surprising

that the AW5 & MW5 curves exhibit a shallower profile. The most striking feature

here is the non-monotonic behavior, i.e. the presence of a maximum in the time to

explosion, which delineates two regimes. The peak in texp for MP5 in Figure 6.7

occurs at approximately Δx = 7 μm, whereas the critical Δx value is slightly

lower, at approximately 5.5 μm, for AW5, and event lowere for MW5 at Δx ≈ 4μm.

For grid resolutions Δx below the critical value, the numerical simulation is in a

“convectively” dominant regime, where the combination of the numerical scheme

and fine grid resolution is sufficient to effectively mitigate the effects of numerical

diffusion in the detonation formation. AW5 & MW5 produce similar values of texp

for Δx < 3 μm, but for this complex kinetics scheme, time convergence for texp

may not be reached except for Δx < 0.5 μm, consistent with findings by Powers

& Paolucci[72]. In the case of AW5, grid convergence is observed at Δx ≈ 0.5μm.
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For grid resolutions greater than the critical value of Δx in Figure 6.7, we enter the

numerically dissipative regime, where coupling of the fluid mechanics and kinetics

is enhanced due to numerical diffusion of temperature and chemical concentrations.

The value of texp thus decreases with increasing Δx in this numerically dissipative

regime.

To obtain results that are truly insensitive to the numerical effects, one requires

Δx → 0, since the two methods converge in that limit to a single value for texp, but

of course this is a practical impossibility. The results in Figure 6.7 suggest that,

to be able to reasonably resolve detonation propagation and shock-flame coupling

dynamics, a grid spacing of Δx = 2.5 μm or smaller may produce acceptable ac-

curacy, given less than a 5% difference between the two different schemes. Yet the

time to re-explosion is but one parameter that is affected by grid resolution, and

calculations of the shock-flame instabilities at smaller grid spacings are needed to be

able to explore other quantitative features.

A simple fast Fourier transform (FFT) can be used to find the spectral content

of the two instability modes, HF and HA, which are observed in Figures 6.2 - 6.4.

Figure 6.8 shows FFT results for the MP5 scheme and grid sizes Δx = 2.5, 1.5, and

1.0 μm. There is remarkable consistency in the dominant frequencies here; for both

HA instabilities near a frequency of approximately 0.35 MHz and HF instabilities

near 2.3 MHz, there is relatively little difference in results for Δx ≤ 2.5μm. This

observation suggests that the spectral content of the resulting instability is relatively

insensitive to the grid spacing, as long as Δx lies below the critical value for the

start of numerical diffusion. At high frequencies, above 4 MHz, there is some grid

dependency; in fact, frequencies above 4 MHz are not seen for Δx = 1.5 μm. The

spectral content around 4.5 MHz is likely to be a harmonic of the strong 2.3 MHz
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signal. Note that since the instabilities develop for a finite time only, the sampling

statistics of the FFT are limited. The use of a wavelet decomposition did not provide

improvements in the signal-to-noise ratio.

These results confirm earlier complex kinetics findings [16] which indicate that

a detonation near the CJ limit has two physically distinct instability modes. The

high frequency mode always appears first and marks the transition from a ‘stable’

CJ detonation, where a low frequency mode appears later in time. The overdriven

detonation simulations by Leung et al.[17] with a two-step reaction mechanism also

demonstrate multiple instability modes, but with distinct differences from those seen

here, as noted above.

Our observed fluctuations in key properties (e.g., in species concentration, tem-

perature, and pressure) of the fluid within the induction zone are described by Oran

& Boris[73] as ‘hot spots’. The present study with complex reaction kinetics shows

that these ‘hot spots’ contribute to an initial stage of the flame dynamics. In this

regime, the induction length is very small (� << �CJ), and acoustic waves gener-

ated by the perturbed chemistry are rapidly transmitted to the shock, i.e. leading

to high-frequency modes. Because there is a very limited amount of fluid that can

participate in the fluctuation of the heat release, only low-amplitude perturbations

of the CJ peak pressure appear. As these acoustic waves reach the leading shock and

strengthen it, their frequency can be measured as that of the fluctuations of the peak

pressure. Eventually the average induction length continues to increase and the sec-

ond mode appears, which directly couples the flame speed with the shock, resulting

in fluctuations with lower frequency but much higher amplitude. This interpretation

of our observations will be elaborated upon and verified in the next section.
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6.2 Simplified Model

To better understand and interpret the coupling between reactive and fluid me-

chanical/acoustic phenomena that generates our observed results, a model for the

induction zone may be constructed and explored. This model is composed of a lead-

ing shock, a heated, post-shock medium(fluid), and a flame front, all of which are

illustrated in Figure 6.9. A single period of the detonation oscillation can be de-

scribed, in the reference frame of the shock, in a manner similar to that of McVey &

Toong[74], as follows. Fluctuations at the flame front create an acoustic (pressure)

disturbance, which travels at the acoustic wave speed, λac, through the induction

zone until it reaches the leading shock; this process occurs between reference times

ta and tb. Upon contact, the pressure fluctuation carried by the acoustic wave will

accelerate the shock and alter the post-shock conditions, thus creating an entropy

disturbance (temperature fluctuation). This entropy disturbance will propagate back

into the induction zone at the entropy wave speed, λen, toward the flame front, this

process occuring between times tb and tc. A resonant condition is achieved when,

upon contact with the flame, the entropy wave creates a new acoustic disturbance

in the flame, and the cycle repeats. Figure 6.9 illustrates this phenomenon, with

relations for the entropy and acoustic wave speeds as follows, respectively:

λen(x, t) =
dx

dt

∣∣∣∣
en

= u2(x, t) (6.1)

λac(x, t) =
dx

dt

∣∣∣∣
ac

= c(x, t)− u2(x, t) (6.2)

Here u(x, t) is the fluid velocity, c(x, t) is local speed of sound, D(t) is the detona-

tion velocity, and u2(x, t) = |u(x, t) − D(t)| is the post-shock fluid velocity in the

128



detonation reference frame. From these wave speeds the period of the cycle, τ , may

be expressed by

τ =

∣∣∣∣∣
∫ xs

xf

1

λac(x, t)
dx

∣∣∣∣∣+
∣∣∣∣
∫ xf

xs

1

λen(x, t)
dx

∣∣∣∣ (6.3)

where xs = (t − t0) · D(t) is the position of the shock and xf is the position of the

flame.

At a zeroth-order approximation, the fluid properties in the induction region,

Q2(x, t), are assumed to weakly vary with time for a given half cycle, ∂Q2(x,t)
∂t

� 0 &

∂Q2(x,t)
∂x

� 0. This also implies that the relative positions of the flame and shock front

are approximately constant. From this approximation, the period can be determined

τ =
�̄

cab + uab − D̄ab

+
�̄

ubc − D̄bc

(6.4)

where �̄ is the period-averaged induction length, ab is the fluid state at the acoustic

wave half-cycle, bc is the fluid state during the entropy wave half cycle, and uα, cα,

and D̄α are the the fluid speed in the detonation reference frame, speed of sound,

and average detonation speed, respectively, for half-cycle α. The model for acoustic

and entropy half cycles are illustrated in Figure 6.10, corresponding to observed

oscillations as indicated in the inset. From the period of the combined cycles, the

frequency in oscillations of the peak pressure trace is f = τ−1.

Data may be extracted from the full kinetics results at different peak pressure

cycles from the high frequency as well as high amplitude regime, and compared

with the simplified model expressed in Equation 6.4. Figure 6.12 illustrates the

evolution of the induction zone temperature profile in the detonation reference frame

for a given period of the high amplitude mode, with data for the acoustic wave
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propagation in (a) and for the entropy wave in (b). The density distributions for

the corresponding HA mode are shown in Figure 6.14. Using the induction zone

data and the period from Eq. (6.4), the frequency f ≈ 310 kHz may estimated for

the HA mode, which is in excellent agreement with that obtained from the spectral

analysis using the full simulation, 310 ± 40 kHz, shown in Figure 6.8. Performing

the same analysis on the high frequency (HF) mode, illustrated in the temperature

profiles in Figure 6.11 and the density profiles in Figure 6.13, the frequency f ≈
2.08 MHz may estimated, which is also in good agreement with that extracted

from the spectral analysis (2.29± 0.4 Mhz) in Figure 6.8. Hence this simple model

appears to capture reasonably well the global processes that lead to the high- and

low-frequency detonation instability modes.

We should point out that this simple model has been succesfully applied to an-

other case of shock-induced instability. For strong, ionizing shocks in a noble gas

(specifically, argon), a similar structure of shock, induction zone and reaction front

can be observed [75, 76, 77]. The instability in this case has lower amplitudes, due to

the absence of exo-thermic reactions, but is also well explained by a resonant coupling

between the shock front and reaction zone through the transmission and reflection of

entropy and acoustic waves [75]. In fact, the 2D structure of that flow could be found

to have features remarkably similar to detonations including, for example, artifical

soot patterns [77]. This indicates that the model, despite its simplicity, provides a

good insight into the true physical mechanisms involved and may have relevance to

a universal class of instabilities in reactive shock systems.
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6.3 Discussion

The ‘hot spot’ which appears in the high frequency mode temperature profiles (Figure

6.11) is of particular interest in interpreting the differences between modes. This hot

spot burns only a fraction of the overall mixture and the heat release is not sufficient

to significantly alter the characteristic speeds of the flow (especially since the speed

of sound only varies with the square-root of the temperature). Examination of the

temperature profiles in Figure 6.11, in particular panel (a), shows that the reaction

zone fluctuates from a ‘hot-spot’ position without significant change in location; if

at all, the perturbed region of accelerated burning is actually convected downstream.

This pre-ignition effect does not allow the flame to accelerate, and in the case of

the high frequency mode, the detonation is still slightly overdriven. The resonance

between the perturbation of the chemical rates at the hot spot and the shock front

still remains, though, and is the basis for the observed oscillation pattern, as indicated

by the agreement between computed and measured frequencies.

By contrast in the high amplitude mode’s temperature profiles, seen in Figure

6.12, there is no observed ‘hot spot’. More likely, the perturbation has moved to the

flame region and any acceleration of the chemical rates in that region can enhance

the rate of heat release much more significantly. This allows what is presumably a

SWACER-like [71] mechanism to govern this high amplitude regime, starting from

a flame at the furthest distance from the shock, �̄max, and accelerating towards the

shock as it burns the fluid in the induction zone, releasing large amounts of energy

up to the point of contact with the shock. This can be seen in Figure 6.12(a), where

the temperature profiles for the HA mode clearly exhibit a dramatic reduction of the

distance between the shock and flame fronts in time. Thus, the HA mode is very
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much a SWACER-like mechanism, while the HF mode is not. This large change in

shock-flame distance is not seen in the two-step model results of Leung et al.[17],

thus highlighting another important feature of the true kinetics.

From the density profiles illustrated in Figures 6.13 and 6.14, it becomes quite

apparent, even in the high-frequency regime, that there is a large variation of density

within the induction zone throughout a given cycle. Neither single-step Arrhenius

kinetics [12, 13, 14, 15] nor a two-step reaction model [17] account for these large

density variations; their ZND approximation is only valid for a brief portion of the

cycle in the HA regime. Therefore, more complex reaction kinetics than have been

incorporated in the past should be utilized to capture the full quantitative features of

the evolving detonation instabilities. The simple two-wave resonant model explored

in Section 6.2 also depends on approximately constant flow properties within the in-

duction zone, and thus the same limitations apply to this model, except that we have

separated the cycle into two sections, each with different average flow properties and

induction lengths. Hence a reasonable representation of global dynamical character

is achieved with the simple model.

As the detonation relaxes toward the CJ condition prior to the onset of the

instabilities, the post shock conditions can be used to determine the chemical time

scale corresponding to the induction zone. For the present simulations this time scale

is approximately τhydr = 300±10ns. Using the same post shock conditions in a zero-

dimensional reactive simulation produces time scale τchem = 215± 5ns. This level of

disparity is to be expected, because the zero-dimensional calculations are performed

at constant volume, and as the system approaches the peak of the H concentration

(the criterion used to define the flame center), the energy liberated remains confined

and leads to a more rapid rate of reaction. Using the τhydr value as a normalization
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factor, the two modes observed in the present simulations, HF and HA, correspond

to normalized periods of 1.6 and 10.75, respectively. This is within the range of

instabilities observed by Leung et al.[17]; a more exact correspondence is difficult to

obtain, since several parameters are being varied in their two-step model, with no

direct relation to the actual chemical system. As noted in Section 6.1, in the present

studies we do not observe the so-called “very-high frequency” mode seen by Leung et

al.[17], except for very low amplitude oscillations that are shown to be a numerical

artifact. In fact, a physical instability at very high frequency would correspond to an

oscillation period that is less than the induction delay, implying that the “hot spot”

be located very close to the shock. In that case, the extent of this perturbation (i.e.,

the reaction time) would need to be much smaller than the induction period. With

realistic chemistry, this may not be possible. Thus, it is conjectured here that the

very high frequency mode may be an artifice of the two-step model.

133



ti
m
e
[μ
s]

x [cm]

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

(a) Pspark = 20 atm with 0.25 cm spark length where detonation is not achieved
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(b) Pspark = 40 atm with 0.25 cm spark length where detonation is achieved

Figure 6.1: Pressure contours on an x-t diagram for a spark ignited H2-Air mixture

with Δx = 50μm, computed using the MP5 scheme.
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(a) Δx = 12.5 μm
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(b) Δx = 2.5 μm

Figure 6.2: Peak pressure-time history of a spark-ignited H2-air mixture simulated

with two different grid cell sizes Δx using the MP5 scheme. The time to re-explosion,

texp, high amplitude mode, HA, and high frequency mode, HF, are illustrated.
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Figure 6.3: High frequency portion of peak pressure time history as in Fig. 6.2,

simulated with two different grid cell sizes Δx.
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Figure 6.4: High amplitude portion of peak pressure time history as in Fig. 6.2,

simulated with two different grid cell sizes Δx.
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Figure 6.11: Temperature distribution in shock reference frame at different times

within: (a) the acoustic wave cycle (times a = 29.1 μs to b = 29.3 μs) and (b) the

entropy wave cycle (times b = 29.3 μs to c = 29.5 μs). Data are extracted from high

frequency (HF) mode results.
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Figure 6.12: Temperature distribution in shock reference frame at different times

within: (a) the acoustic wave cycle (times a = 57.1 μs to b = 58.3 μs) and (b) the

entropy wave cycle (times b = 58.3 μs to c = 60.7 μs) Data are extracted from high

amplitude (HA) mode results.
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Figure 6.13: Density distribution in shock reference frame at different times within:

(a) the acoustic wave cycle (times a = 29.1 μs to b = 29.3 μs) and (b) the entropy

wave cycle (times b = 29.3 μs to c = 29.5 μs). Data are extracted from high frequency

(HF) mode results.

145



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

-0.1  0  0.1  0.2  0.3  0.4

ρ
[k
g
/
m

3
]

x [mm]

time

a
b

(a) acoustic wave cycle

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

-0.1  0  0.1  0.2  0.3  0.4

ρ
[k
g
/m

3
]

x [mm]

time

b
c

(b) entropy wave cycle
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amplitude (HA) mode results.
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CHAPTER 7

Magnetic Field and Detonation Interactions

In evaluating the feasibility of the PDRIME configurations we must examine how a

magnetic field will interact with a conducting, reacting flow such as the detonation

as well as the amount of conductivity required in the fluid for sufficient interaction

of the magnetic field and detonation. In Chapter 5, various PDRIME configurations

have been evaluated using simplified combustion kinetics and the exploration of the

effect of MHD to accelerate the reactive flow in the bypass section or magnetic

chamber piston concept(CP) or decelerate the flow in the nozzle via nozzle generator

concept(NG). In these prior calculations, the ability of MHD to affect combustion

was modeled globally, but not in detail. The goal of the studies in this chapter is

to determine if such MHD-based acceleration/deceleration is possible for detonation

phenomena.

7.1 Detonation Instabilities with Applied Magnetic Fields

In Section 6.1, the stability of an unsupported detonation was evaluated. For the

next simulations, we began with the same initial conditions used in the previous

chapter and seeded the fluid with different amounts of cesium (1%, 5%, and 10% by

mole). Because of the large molecular weight of cesium (MCs

MH2
≈ 70, MCs

MAir
≈ 5), adding
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upwards of 10% Cs can significantly affect the dynamics of the detonation (e.g.,

CJ detonation speed DCJ , flame temperature Tf , post-leading shock pressure and

temperature P vN ,T vN , etc.) even without the presence of an applied magnetic field.

Figure 7.1 illustrates the peak pressure traces of unmagnetized spark-ignited H2−air

detonations with the addition of 0, 1, 5, & 10 % Cs. A grid resolution of 5μm and the

MP5 scheme were used to perform the 1D detonation simulations in the remainder

of this section. Figure 7.1(a), in the absence of Cs addition, shows the initiation

of HF and HA instability modes, as observed in Figures 6.2(a) & (b) for different

grid cell sizes. With a grid resolution of 5 μm it is possible to capture the essential

dynamics of the detonation, within the “convection” dominated regime (see Figure

6.7), although parameters such as time to re-explosion may not be as accurately

determined. Nevertheless, 5 μm resolution is sufficient to enable computation of

additional ionization processes of Cs and their effect on instabilities.

From Figure 7.1 (a)-(d), one will notice the oscillations become less erratic and, at

5% and 10% molar addition, approaching consistent HA behavior, as more cesium is

added. Extinction, where the peak pressure decays, is significantly delayed for higher

Cs concentrations. This trend is consistent with the observations of Radulescu et

al.[19] where argon was incrementally added to acetylene-oxygen mixture to stabilize

the detonation. Heavy argon dilution in the mixture led to large-frequency, small

amplitude regular oscillations of the shock front pressure. Radulescu et al. attributed

the stabilizing effect of the diluent to the lower temperature in the reaction zone which

leads to slower exothermic reaction rates. For the present calculations, regularization

of both the HF and HA modes with Cs addition could result from the lowering of

the reaction front temperature. The addition of Cs is also observed to reduce the

effective 1D detonation speed, as also determined by the theoretical reduction in the
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CJ speed (see Table 7.1). The results shown in Figure 7.1 will serve as the “baseline”

case for the 1D dynamics as affected by an applied magnetic field.

Now that the “baseline” behavior has been established for cesium-seeded det-

onations, let us now examine how the behavior of these instabilities change when

one gradually increases the strength of an applied magnetic field. A fixed magnetic

field is used, per Equation 2.17, with a loading factor, K = 0 (no applied electric

field). The magnetic field configuration is illustrated in Figure 7.2 where a transverse

magnetic field will be applied with strengths ranging from 0 to 8 Tesla. A spark-

ignited detonation will propagate into the region of this magnetic field, as shown.

Figures 7.3, 7.4, and 7.5 show the peak pressure traces of detonations seeded with

1%, 5%, and 10% Cs, respectively, under the influence of various applied magnetic

field strengths. Without an applied magnetic field, the peak pressure trace of a det-

onation with a 1% Cs has an irregular periodicity (Figures 7.1(b) & 7.3(a)). As the

magnetic field is strengthened (see Figures 7.3(b)-(f)) the detonation peak pressure

trace shows more prolonged erratic behavior, with no clear trend in the time at which

extinction (pressure decay) takes place. But Figure 7.4 shows that as the magnetic

field strength is increased, the oscillations of the peak pressure trace are driven to

become less regular at earlier times and extinguish sooner. Similarly findings are

observed in Figure 7.5. There are a few qualitative assessments that can be made

from these results. Figures 7.3(a), 7.4(d), & 7.5(e) illustrate peak pressure traces

of detonations seeded with 1%, 5%, and 10% cesium under applied field strengths

of Bz = 0, 6, and 7 Tesla, respectively. These peak pressure traces demonstrate a

general trend. It would appear as though the stabilizing effect of the presence of

diluent, cesium, becomes less effective when the fluid at the flame has a greater con-

ductivity and thus introduces an additional scale to the flame-shock dynamics. One

149



could attempt to find the modes that exist within the peak pressure trace to give

some quantitative insight into the effects of these fields, but the data would prove

unreliable due to the small time frame during which these large oscillations exist.

The fact that the application of the magnetic field can degrade the cyclic stability

of the 1D detonation at earlier times does indicate the ability of the B field to alter

the flame-detonation coupling as well as the combustion process itself.

7.2 Detonation Instabilities with MHD

The behavior of a detonation with an applied field using the MHD accelerator con-

figuration will now be investigated. The study will begin with a fixed magnetic field,

Equation 2.17, and the loading factors recommended by Cambier[4], Ky = 1.5 and

0.5 (i.e., the electric field scaled with ux × Bz), for the accelerator and generator,

respectively. The remainder of the current detonation configuration is as specified in

Section 7.1.

The previous section demonstrated that the H2-air, 1D spark-induced detonation

under investigation is unstable under normal operating conditions with or without an

applied magnetic field. Figures 7.6-7.8 show the peak pressure traces of detonation

seeded with 1%, 5%, and 10% Cs, respectively, with an electric field in the acceler-

ator configuration (Ky = 1.5) under the influence of various applied magnetic field

strengths. In the 1% Cs test case, it becomes quite clear, when comparing Figures

7.6(b)-(f) with the unmagnetized case of Figure 7.6(a) that the MHD acceleration

has the ability to regularize and sustain the oscillating detonation; the detonation

does not extinguish, for the time period shown, as it does in Figure 7.6(a). When

the amount of cesium is increased to 5%, as the magnetic field is increased as shown
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in Figures 7.7(a)-(f) the detonation is cyclically stabilized and the peak pressure

amplitude greatly reduced, by around 30%. When the amount of cesium is increased

to 10%, as the magnetic field is increased from Bz = 0T , Figure 7.8(a), to Bz = 8T ,

Figure 7.8(f), the detonation goes from a cyclically stable galloping detonation to a

nearly stable CJ detonation, with a slightly delayed onset of the initial instabilities.

Because of the strong effect the magnetic field had on the detonation stability

and sustainment, in both the accelerator and generator configurations, we now ex-

amine these features side-by-side. Figures 7.9(a)(c)(e) illustrate the time dependent

peak pressure, induction length, and detonation velocity, respectively, for a 10 % Cs

in the accelerator configuration with applied magnetic field strengths of 0, 3, and 8

T. Figures 7.9(b)(d)(f) show the same thing for the generator configuration. Fig-

ure 7.9(a) & (c) show a significant decrease in amplitude of the peak pressure and

induction length, respectively, as the magnetic field strength is increased for an accel-

erator, while figure 7.9(e) shows the detonation speed stabilizes near but above the

Chapman-Jouguet velocity, with little propensity for extinction. In contrast, Figures

7.9(b) & (f) for the generator configuration show that peak pressure and detonation

speed become erratic, with increasing magnetic field strength, and Figure 7.9(d)

shows that the induction length oscillations becomes unbounded, leading to extinc-

tion for the 8 Tesla case. This contrast is quite striking, especially in the generator’s

influence on extinguishing the detonation. There appears to be some acceleration of

the detonation, to a speed greater than CJ for the accelerator configuration (Figure

7.9(e), 8T), but overall there is no significant difference in the detonation velocities

between accelerator and generator configurations.

151



7.3 2D Cellular Detonation in an Applied Magnetic Field

While the effects of MHD on the stability of the 1D detonation are interesting, the

more realistic flow is that of a two-dimensional detonation structure. Before the

effects of an applied magnetic field on a two-dimensional detonation are examined,

however, one must first examine the effects of seeding cesium on the evolving cellular

detonation. The detonation front as well as the underlying detonation structure may

be found in the contours of the maximum pressure, Pmax, at each point in space.

These maximum pressure traces have been observed in experiments over decades in

smoke-foil records[78]. The unmagnetized 2D detonation with various amounts of

cesium will be examined first.

The 2D detonation initiated with a computational spark is illustrated in Figure

7.10. A grid resolution of Δx = Δy = 50μm and the MW5 scheme are used to

perform the 2D detonation simulations in the remainder of this chapter; much finer

grid resolution becomes prohibitively expensive, yet this is found to be sufficient for

the study of the overall detonation structure. Figure 7.11 shows that evolution of

an H2-air detonation front (Schlieren-like plot and smoke-foil record) without the

presence of an applied magnetic field and without Cs injection. From the series of

figures, the Mach stem, transverse shocks, and incidents shocks are well resolved.

Figure 7.12 shows the detonation front and smoke-foil record after 75μs of the same

detonation. At this resolution, it can be clearly seen in the smoke-foil record, Figure

7.12(b), that cellular detonation is achieved, and is consistent with the established

literature for cellular detonations[78, 79, 80, 81]. The simulated detonation cellular

length and width for this configuration are λL = 2.7±0.1mm and λW = 1.67±0.1mm,

respectively. It can also be demonstrated that an unmagnetized H2-air-Cs mixture
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seeded with cesium ranging from 1-10% can achieve the same cellular detonation and

detonation front resolution, shown in Figures 7.13 -7.15. The decreased detonation

velocity as cesium is increased from 1% to 10% is consistent with the 1D simulations

as well as the theoretical CJ velocity, which are tabulated in Table 7.1.

In the previous sections, 7.1 and 7.2, we demonstrated that an applied field can

alter the cyclic stability of a 1D detonation. Now we will investigate if an applied

field can affect the regularity or velocity of a 2D cellular detonation. Due to the large

spatial variation of the longitudinal velocity, ux, the static electric field should no

longer be optimally tailored to ux and Bz. In order to more accurately account for

the static electric fields contribution to the MHD forces, while still keeping the load-

ing factor concept for the accelerator and generator configurations, the static electric

field is prescribed as Ey = KyUBz, where U is the mean velocity, and will not evolve

with the flow. The optimal condition U ≈ 1000m/s is assumed. As performed

with the one-dimensional test cases, 2D detonations in the both the accelerator and

generator configurations were computed with varying amounts of cesium(1, 5, and

10%) using the highest magnetic field strength used previously in the 1D detona-

tion simulations, Bz = 8T . From the X-t plots of the centerline of the 2D shock

front, illustrated in Figures 7.16-7.18, there is no noticeable/significant altering of

the detonation velocity in either generator or accelerator modes, as compared with

the detonation in the absence of MHD. The peak pressure evolution in Figures 7.19-

7.21 similarly do not show any noticeable change in the cyclic stability of these

detonations. The differences in the two configurations can be seen in the centerline

pressure and conductivity profiles, where the 10 % Cs and Bz = 8T case at t = 75μs

case is illustrated in Figure 7.22. These differences in the profiles are seen further

downstream, however, and do not play a role in the detonation dynamics. Hence even
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at a very high magnetic field strength, 8T, and for 10% Cs, there does not appear

to be a significant influence of the MHD on detonation dynamics. In an attempt to

see if the two-dimensional detonation can be altered by MHD in some meaningful

way, but under different conditions, two alternative approaches were taken. The first

was to artificially enhance the kinetics of the cesium, (the original formulation of

which is described in Appendix A). The second approach drastically increased the

strengths of the applied magnetic and electric fields. For both cases, 10 % Cs was

seeded because it allowed for more optimal levels of ionization as compared to 1 and

5% Cs addition.

7.3.1 Enhanced Kinetics

In the enhanced kinetics approach, the Arrhenius pre-factor of the cesium forward

reaction mechanisms, A, was increased by factors of 10 and 100, respectively. Con-

ductivity and Schlieren-type plots are shown in Figures 7.23 and 7.24 for the gener-

ator and accelerator configurations, respectively. One can see a significant increase

in conductivity of the detonation close to the leading shock for both the accelera-

tor and generator configurations, with an increase in the “enhanced kinetic factor”,

EK, where the modified Arrhenius pre-factor in Equation 2.24 is A′ = EK × A.

Slight deceleration and acceleration of the detonation front is observed, respectively,

in Figures 7.23 & 7.24. The centerline peak pressure traces for the accelerator config-

uration, illustrated in Figure 7.25, show that as the EK is increased, the amplitude

of the peak pressure decreases. In contrast, the centerline peak pressure traces for

the generator configuration, illustrated in Figure 7.26, show that as EK is increased

the amplitude of the peak pressure increases. These results are consistent with the
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1D results from Section 7.2 for the accelerator and generator configurations, in that

when there is sufficient conductivity, with a larger concentration of Cs for the 1D

detonation, the applied magnetic and electric fields affect the amplitude of the peak

pressure. But even with the large increase in conductivity shown in Figures 7.23 and

7.24 for EK = 100, the X-t diagram of the unmagnetized, accelerator, and gener-

ator configurations, illustrated in Figure 7.27, shows only a small alteration of the

detonation velocity: +30m/s (increase) and −20m/s (decrease) for the accelerator

and generator configurations, respectively.

7.3.2 Strong Applied Fields

Next, we subjected the 2D detonation to significantly stronger magnetic fields (16T

and 32 T) without enhancing the cesium kinetics.1 Figures 7.28 and 7.29 show

the centerline peak pressure traces for Bz = 8, 16, and 32 T in the accelerator and

generator configurations, respectively. Even when the 2D detonation in the generator

configuration is subjected to a strong field, the peak pressure amplitude, shown in

Figure 7.29, is slightly increased. The X-t plot for the generator configuration,

illustrated in Figure 7.30, shows only a marginal decrease in the detonation velocity.

By comparing the profiles of the x-velocity, conductivity, pressure, and temperature

for the generator, illustrated in Figures 7.31 - 7.34, respectively, one will see that the

MHD effects are manifested significantly far downstream of (>> λW ) the leading

shock.

The accelerator configuration with a strong field, on the other hand, has a more

significant effect on the 2D detonation dynamics. From Figure 7.28 one can see

a transition, from Bz = 8T where the amplitude and frequency of oscillations are
1Unrealistic but only interested in scaling and dynamics
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regular, to Bz = 16T where the amplitude begins to noticeably decrease at t ≈ 50μs,

and finally to Bz = 32T where at t = 40μs there is a significant decrease in amplitude

and an increase in the mean peak pressure. Because of the significant change in

the oscillation frequency, amplitude and mean of the centerline peak pressure, the

associated smoke-foil record, illustrated in Figures 7.35 - 7.38, for field strengths

Bz = 0, 8T, 16T and 32T, respectively, can be used to see the alteration of the

underlying structure of the cellular detonation. In Figure 7.36, we see that for the

Bz = 8T case, cellular structure pattern remains regular, and from Figure 7.37 for the

Bz = 16T case, the cellular patterns become irregular at x ≈ 9.5cm. The detonation

case where Bz = 32T (Figure 7.38) shows that there is a transition from a cellular

structure to quasi-1D detonation at x ≈ 7.2cm. The X-t plot for the accelerator

configuration, illustrated in Figure 7.39, shows marginal increases in the detonation

velocity of +5m/s for the Bz = 16, but there is an increase of 338m/s for Bz = 32T ,

a 21% increase above the non-MHD case.

7.4 Conclusions

In this chapter, we examined the effects of a diluent (cesium) on the dynamics of a

1D spark-ignited detonation and confirmed the observation of Radulescu et al.[19]

that the diluent had a regularizing effect on the oscillations of the 1D detonation.

We also studied a cesium-seeded 1D spark-ignited detonation subjected to an ap-

plied magnetic field in both a accelerator and generator configurations and found

that the accelerator mode had a regularizing effect on the detonation oscillations,

while the generator mode had the opposite effect (see Figure 7.9). While it was

demonstrated that the dynamics of a cesium-seeded 1D spark-ignited detonation can
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be significantly altered when subjected to an applied magnetic field of reasonable

strength (Bz ≤ 8T ), the same statement does not hold true for the two-dimensional

case. When the enhanced kinetics factor EK for a cesium-seeded 2D spark-ignited

detonation was increased (EK = 1, 10, 100), the conductivity behind the leading

shock was significantly increased (see Figures 7.23 and 7.24), but there was no alter-

ation to the detonation velocity (see Figures 7.30 and 7.31). The 2D spark-ignited

detonation required a significantly stronger magnetic field (32T ) than the 1D deto-

nation to accelerate the detonation in the time (75μs) and length (15cm) scales of

the problem (see Figure 7.39). These findings suggest that multidimensional effects

play an important role in MHD acceleration. Perhaps a set of reactants/diluent with

an increased flame temperature, for increased conductivity, and a lower density, for

less inertia, would be more amenable for MHD acceleration.

157



Theoretical
%Cs CJ [m/s] 1-D [m/s] 2-D [m/s]

0 1967 1998 1938

1 1917 1950 1883

5 1754 1763 1714

10 1584 1600 1551

Table 7.1: The effects of the addition of Cesium on the detonation velocity of a

1D and 2D H2 −Air detonation. The theoretical Chapman-Jouguet(CJ) velocity is

calculated with the initial conditions: P0 = 1 atm and T0 = 300K.
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Figure 7.1: Peak pressure traces of spark-ignited H2-air detonations with different

amounts of seeded cesium without an applied magnetic field (B = 0). The MP5

scheme with Δx = 5μm was used here.
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Figure 7.2: Configuration of spark-ignited detonation with an applied magnetic field.
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Figure 7.3: Peak pressure traces of detonations seeded with 1% cesium subjected to

various magnetic field strengths Bz without an applied electric field (K = 0). The

MP5 scheme with Δx = 5μm was used here.
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Figure 7.4: Peak pressure traces of detonations seeded with 5% cesium subjected to

various magnetic field strengths, Bz without an applied electric field (K = 0). The

MP5 scheme with Δx = 5μm was used here.
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Figure 7.5: Peak pressure traces of detonations seeded with 10% cesium subjected

to various magnetic field strengths Bz without an applied electric field (K = 0). The

MP5 scheme with Δx = 5μm was used here.
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Figure 7.6: Peak pressure traces of detonations seeded with 1% cesium subjected to

various magnetic field strengths Bz with an applied electric field (Ky = 1.5), for an

“accelerator” configuration. The MP5 scheme with Δx = 5μm was used here.
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Figure 7.7: Peak pressure traces of detonations seeded with 5% cesium subjected to

various magnetic field strengths Bz with an applied electric field (Ky = 1.5), for an

“accelerator” configuration. The MP5 scheme with Δx = 5μm was used here.
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Figure 7.8: Peak pressure traces of detonations seeded with 10% cesium subjected

to various magnetic field strengths Bz with an applied electric field (Ky = 1.5), for

an “accelerator” configuration. The MP5 scheme with Δx = 5μm was used here.
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Figure 7.9: Time trace comparisons of Bz = 0, 3, and 8T 1D detonations with 10%

Cs in the accelerator configuration(Ky = 1.5) and generator configuration(Ky = 0.5)

with Δx = 5μm.
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Figure 7.10: Computational setup for 2D detonation simulations, where the red

region represents the computational spark.
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Figure 7.11: Schlieren-type plot using density gradients of the detonation front from

time 71.16μs to 72.36μs.
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Figure 7.12: StoichiometricH2−Air detonation at t = 75μs where Δx = Δy = 50μm

and x : y ∈ [12, 15]cm : [0, 0.5]cm.
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Figure 7.13: Stoichiometric H2 − Air − 1%Cs detonation at t = 75μs where

Δx = Δy = 50μm and x : y ∈ [11.5, 14.5]cm : [0, 0.5]cm.
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Figure 7.14: Stoichiometric H2 − Air − 5%Cs detonation at t = 75μs where

Δx = Δy = 50μm and x : y ∈ [10, 13]cm : [0, 0.5]cm.
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Figure 7.15: Stoichiometric H2 − Air − 10%Cs detonation at t = 75μs where

Δx = Δy = 50μm and x : y ∈ [9, 12]cm : [0, 0.5]cm.
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Figure 7.16: X-t plot comparing the progression of the leading shocks at the centerline

of the 2D detonation with no MHD, generator, and accelerator configurations. Here

the mixture has 1% Cs and Bz = 8T .
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Figure 7.17: X-t plot comparing the progression of the leading shocks at the centerline

of the 2D detonation with no MHD, generator, and accelerator configurations. Here

the mixture has 5% Cs and Bz = 8T .
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Figure 7.18: X-t plot comparing the progression of the leading shocks at the centerline

of the 2D detonation with no MHD, generator, and accelerator configurations. Here

the mixture has 10% Cs and Bz = 8T .

176



 10

 20

 30

 40

 50

 60

 70

 80

 0  10  20  30  40  50  60  70  80

P
re
ss
u
re

[a
tm

]

time [μs]

no MHD
generator

accelerator

(a) Wide view

 15

 20

 25

 30

 35

 40

 45

 50  55  60  65  70  75

P
re
ss
u
re

[a
tm

]

time [μs]

no MHD
generator

accelerator

(b) Enlarged view

Figure 7.19: Peak pressure trace of the centerline of the leading shock of the 2D det-

onation with no MHD, generator, and accelerator configurations. Here the mixture

has 1% Cs and Bz = 8T .
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(b) Enlarged view

Figure 7.20: Peak pressure trace of the centerline of the leading shock of the 2D det-

onation with no MHD, generator, and accelerator configurations. Here the mixture

has 5% Cs and Bz = 8T .
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Figure 7.21: Peak pressure trace of the centerline of the leading shock of the 2D det-

onation with no MHD, generator, and accelerator configurations. Here the mixture

has 10% Cs and Bz = 8T .
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Figure 7.22: Centerline pressure and conductivity profiles for the accelerator and

generator configurations with Bz = 8T at t = 75μs.
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Figure 7.23: Conductivity distribution with a linear color map overlaid with

Schlieren-type plot using density gradients of the detonation front in the genera-

tor configuration with 10% Cs and Bz = 8T , for different enhanced kinetic(EK)

factors.
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Figure 7.24: Conductivity distribution with a linear color map overlaid with

Schlieren-type plot using density gradients of the detonation front in the acceler-

ator configuration with 10% Cs and Bz = 8T , for different enhanced kinetic(EK)

factors.
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Figure 7.25: Centerline peak pressure trace of 2D detonation for the accelerator

configurations with 10% Cs and Bz = 8T with various enhanced kinetics values EK.
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Figure 7.26: Centerline peak pressure trace of 2D detonation for the generator con-

figurations with 10% Cs and Bz = 8T with various enhanced kinetics values EK.
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Figure 7.27: X-t plot of 2D detonation comparing the progression of the leading

shocks at the centerline of the no MHD, generator, and accelerator configurations

with EK = 100, 10% Cs and Bz = 8T .
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Figure 7.28: Centerline peak pressure trace of 2D detonation for the accelerator

configuration with 10% Cs and various Bz values without enhanced kinetics.
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Figure 7.29: Centerline peak pressure trace of 2D detonation for the generator con-

figuration with 10% Cs and various Bz values without enhanced kinetics.
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Figure 7.30: X-t plot of 2D detonation comparing the progression of the leading

shocks at the centerline of the generator configuration with 10% Cs and various Bz

values without enhanced kinetics.
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Figure 7.31: X-velocity profiles of 2D detonation at different times for the generator

configuration with 10% Cs and various Bz values without enhanced kinetics.
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Figure 7.32: Conductivity profiles of 2D detonation at different times for the gener-

ator configuration with 10% Cs and various Bz values without enhanced kinetics.
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Figure 7.33: Pressure profiles of 2D detonation at different times for the generator

configuration with 10% Cs and various Bz values without enhanced kinetics.
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Figure 7.34: Temperature profiles of 2D detonation at different times for the gener-

ator configuration with 10% Cs and various Bz values without enhanced kinetics.
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Figure 7.35: Detonation history presented by maximum pressure contours without

MHD(Bz = 0T ) for 10% Cs.

193



0.0

0.25

0.5

0.0 1.0 2.0 3.0
X [cm]

Y
[c

m
]

0.0

0.25

0.5

3.0 4.0 5.0 6.0
X [cm]

Y
[c

m
]

0.0

0.25

0.5

6.0 7.0 8.0 9.0
X [cm]

Y
[c

m
]

0.0

0.25

0.5

9.0 10.0 11.0 12.0
X [cm]

Y
[c

m
]

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Pmax, atm

Figure 7.36: Detonation history presented by maximum pressure contours. Acceler-

ator configuration with Bz = 8T and 10% Cs.
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Figure 7.37: Detonation history presented by maximum pressure contours. Acceler-

ator configuration with Bz = 16T and 10% Cs.
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Figure 7.38: Detonation history presented by maximum pressure contours. Acceler-

ator configuration with Bz = 32T and 10% Cs.
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Figure 7.39: X-t plot of 2D detonation comparing the progression of the leading

shocks at the centerline of the accelerator configuration with 10% Cs and various Bz

values without enhanced kinetics.
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CHAPTER 8

Conclusions and Future Work

The present computational studies have enabled both a global exploration of PDRIME

concepts for propulsive devices, as well as a detailed exploration of the underlying

physics of detonation-MHD interactions.

For the standard PDRIME utilizing a constant magnetic field, there was marginal

gains in performance over the baseline PDRE configuration using simplified mod-

elling approaches. We investigated closed and open loop control of the magnetic

field utilizing, temporal and temperature controllers, respectively. We found that

these methods of control had marginal performance gains, at best. When the flight

Mach number was significantly lowered (M ≤ 5), we found significant performance

increases without the use of controllers.

The stability and dynamics of a 1D spark-ignited detonation with complex kinet-

ics were also investigated. We developed a model to understand and interpret the

coupling between the reactive and fluid mechanical/acoustic phenomena. We found

that the frequency in oscillations of the peak pressure trace is inversely related to

the time it takes for an acoustic wave to propagate from the flame to the leading

shock and the entropy wave generated from the perturbed shock to travel back to

the flame. We verified the model by finding out it was in agreement with the peak

pressure cycles extracted from the 1D complex kinetics detonation simulation.
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After gaining insight into the stability of the 1D detonation, we investigated the

stability of a cesium-seeded detonation. We confirmed previous findings by Radulescu

et al.[19] that the diluent had a regularizing effect on the 1D detonation. We then

applied MHD using a loading factor, Ky, to the 1D cesium-seeded detonation with

both the generator and accelerator configurations at various magnetic field strengths,

Bz, and concentrations of cesium. We found that for a given concentration of cesium

and applied field strength the accelerator had a regularizing effect, while the genera-

tor had the opposite effect. We then investigated the effect the applied fields had on

the 2D cesium-seeded spark-ignited detonation with the same parameters used for

the 1D simulations (i.e., Bz and cesium concentration) and found that the MHD had

little to no effect on the detonation dynamics, i.e., cellular structure and detonation

velocity. Next, we increased the Arrhenius pre-factor of the cesium forward reaction

mechanism by factors of 10 and 100. We observed a significant increase of conductiv-

ity near the leading shock of the 2D detonation, but little change in the detonation

velocity in either the accelerator or generator configurations. Lastly, we significantly

increased the strength of the magnetic field (16T and 32T ) without enhancing the

cesium kinetics. The generator mode had little effect on the detonation dynamics,

while the accelerator mode significantly altered the detonation velocity.

In Chapter 7, the conductivity of the fluid played an important role in the MHD

acceleration of the detonation. But in order to properly calculate the conductivity,

the number density of electrons as well as the electron temperature, Te, must be

determined (per Equation 2.27). Section 2.3.3 describes how the electron energy is

coupled to the bulk fluid via a two-temperature model. One future direction of this

research is to investigate the dynamics of the detonation in 1D and 2D simulations

using the two-temperature model to more accurately characterize the thermal non-
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equilibrium effects of the bulk fluid. Additionally, the kinetics of excitation and

ionization of the gas can be further investigated by means of a collisional radiative

model[75, 76], commonly used in the study of gas discharges[82, 83], which allow for

a more accurate representation of the atomic state distribution function.

The simulations performed in this dissertation utilized high-order accurate meth-

ods which significantly reduced numerical dissipation. The high-order accuracy al-

lowed for the capturing of sharp flow features (i.e., shocks and contact disconti-

nuities). Oran et al.[84] demonstrated that the viscous effects did not change the

dynamics of the leading shock, thus did not have a significant effect on the detona-

tion cellular structure. But unlike, previous works[68, 84, 85] with detonations, the

downstream effects play an important role in the overall dynamics of the detonation

with MHD acceleration. Future studies involving full ionization kinetics, including

collisional-radiative processes, will be used to examine these processes in further

detail. In addition, a more physically accurate model based on the Navier-Stokes

equations and including species diffusion is needed to correctly model the transport

of the fluid. In addition, precursor effects[86] might play a role in heating the up-

stream fluid, which then alters the flame temperature. It might also be interesting to

investigate the thermal losses to the wall as well as the interactions of the boundary

layer with the shock[87].
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APPENDIX A

Reaction Mechanism

A.1 H2-Air Reaction Mechanism

The H2-air reaction mechanism and Arrenhius coefficients used in the present study

contains 19 reversible elementary mechanisms composed of 9 species[37].

Elementary Mech. A η EA

1.) H +O2 � O +OH 2.60E14 0.000 8400

2.) O +H2 � H +OH 1.80E10 1.000 4450

3.) H2 +OH � H +H2O 2.20E13 0.000 2575

4.) 2OH � H2O +O 6.30E12 0.000 545

5.) H +OH +M � H2O +M 2.20E22 −2.00 0.000

6.) 2H +M � H2 +M 6.40E17 −1.000 0.000

7.) H +O +M � OH +M 6.00E16 −0.600 0.000

8.) 2O +M � O2 +M 6.00E13 0.000 −900

9.) H2 +O2 � HO2 +H 1.00E14 0.000 28000

10.) H +O2 +M � HO2 +M 2.10E15 0.000 −500

11.) H +HO2 � 2OH 1.40E14 0.000 540

12.) H +HO2 � O +H2O 1.00E13 0.000 540

13.) O +HO2 � O2 +OH 1.50E13 0.000 475
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14.) OH +HO2 � O2 +H2O 8.00E12 0.000 0.000

15.) H2O2 +M � 2OH +M 1.20E17 0.000 22750

16.) 2HO2 +M � H2O2 +O2 2.00E12 0.000 0.000

17.) H +H2O2 � H2 +HO2 1.40E12 0.000 1800

18.) O +H2O2 � OH +HO2 1.40E13 0.000 3200

19.) OH +H2O2 � H2O +HO2 6.10E12 0.000 715

(A.1)

A.2 Cesium Reaction Mechanism

The cesium reaction mechanism and Arrenhius coefficients used in the present study

contains 2 reversible elementary mechanisms composed of Cs, Cs+, and e−.

Elementary Mech. A η EA

1.) Cs+ e− � Cs+ + e− + e− 2.48E14 0.500 45900

2.) Cs+M � Cs+ e− +M 2.48E11 0.500 45900

(A.2)
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APPENDIX B

Eigenvector Matrices

The following was derived for a multi-species, two-temperature eigen-system[35, 88].

B.1 Governing Equation

The governing equation for a non-reactive multi-species, multi-temperature three-

dimensional flow without LHS is:

Qt +∇nF = 0 (B.1)

Here the vector containing the conserved variables, Q, and the flux normal to control

volume surface , F, are:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρs

ρu

B

E∗

Se

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρsun

ρuun + P ∗n− 1
μ0
BnB

unB− uBn

(E∗ + P ∗)un − 1
μ0
Bnu ·B

Seun

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.2)
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B.2 Roe Averaged Weighting

Before the eigensystem can be determined, the Roe Averaged variables[46], i.e., mass

fraction, spatial components of velocity and enthalphy, must first be determined on

a flux interface, i+ 1
2
. First the primitive variables are calculated for i and i+ 1 as:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cs

u

b

h

ŝe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.3)

h =
1

ρ

(
E + P − B2

2μ0

− Ee

)
, cs =

ρs
ρ
, b = [bn, bt]

T/
√
ρμ0 , and ŝe =

Se

ρ

where cs represents the mass fraction of the sth species, h represents the specific

enthalpy, and ŝe represents the specific electron entropy. Next, by using the densities

at i and i+ 1, the Roe-averaged variables at the face, i+ 1
2
, are determined by:

Vi+ 1
2
=

Vi
√
ρi +Vi+1

√
ρi+1√

ρi +
√
ρi+1

(B.4)

B.3 Eigensystem and Flux Jacobian Matrix

The flux Jacobian represents the relation Ã = ∂F
∂Q

. From here we diagonalize the

flux Jacobian to get a formulation involving the Jacobian, left and right eigenvector

matrices, and the eigen-matrix.

Ã =
∂F

∂Q
= RΛL (B.5)
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The eigen-matrix is defined as the following,

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

un 0 0 0 0 0 0 0 0 0

0
. . . 0 0 0 0 0 0 0 0

0 0 un + cf 0 0 0 0 0 0 0

0 0 0 un − cf 0 0 0 0 0 0

0 0 0 0 un + cs 0 0 0 0 0

0 0 0 0 0 un 0 0 0 0

0 0 0 0 0 0 un − cs 0 0 0

0 0 0 0 0 0 0 un + cA 0 0

0 0 0 0 0 0 0 0 un − cA 0

0 0 0 0 0 0 0 0 0 un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.6)

Where the diagonal entries are the eigen-values of the system. The definitions

of the fast(slow) magneto-acoustic, cf(s), and the Alfvén, cA, wave speeds can be

found in [88]. The similarity transformation matrices R and L are defined in the

next sections.

B.3.1 Right Eigenvectors

The system satisfies ΔQ = R · α̃ where
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R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 rf rf rs 0 rs 0 0 0

ux Θ+
f,x Θ−

f,x Θ+
s,x 0 Θ−

s,x

√
ρsx

√
ρsx 0

uy Θ+
f,y Θ−

f,y Θ+
s,y 0 Θ−

s,y

√
ρsy

√
ρsy 0

uz Θ+
f,z Θ−

f,z Θ+
s,z 0 Θ−

s,z

√
ρsz

√
ρsz 0

0 Δ̃f tx Δ̃f tx Δ̃stx nx Δ̃stx −sBsx
√
μ0 sBsx

√
μ0 0

0 Δ̃f ty Δ̃f ty Δ̃sty ny Δ̃sty −sBsy
√
μ0 sBsy

√
μ0 0

0 Δ̃f tz Δ̃f tz Δ̃stz nz Δ̃stz −sBsz
√
μ0 sBsz

√
μ0 0

�u2

2
H+

f H−
f H+

s 0 H−
s us

√
ρ us

√
ρ He

0 rf ŝe rf ŝe rsŝe 0 rsŝe 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.7)

where sB is the sign of the normal component of the magnetic field and for the

purpose of a compact expression of R, the following variables are defined,

Δ̃f = rs
cf√
ρ

(B.8a)

Δ̃s = −rf
a2

c2f

cf√
ρ

(B.8b)

Γ̃f = −sBbnrs (B.8c)

Γ̃s = +sBarf (B.8d)

He =
ζe

γe − 1
ργe−1 (B.8e)

H±
f(s) = rf(s)h± rf(s)uncf(s) ± utΓ̃f(s) +

Bt

μ0

Δ̃f(s) (B.8f)

Θ±
f(s),x = rf(s)ux ± rf(s)cf(s)nx ± Γ̃f(s)tx (B.8g)

similarly for the y, z components and ζe = 1 − γe−1
γh−1

As noted by Brio & Wu[60],

renormalization factors, rf and rs, are needed to avoid singular solutions when the

magnetic field vanishes. Their definitions and identities are as follows1,
1Identities computed with εt =

b2t
a2+b2n

> ε∗t ∼ 10−6
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rf =

√
c2f − b2n
c2f − c2s

(B.9a)

rs =

√
c2f − a2

c2f − c2s
=

cf
bn

√
b2n − c2s
c2f − c2s

(B.9b)

rfrs =
cfbt

c2f − c2s
(B.9c)

r2s + r2f
a2

c2f
= 1 (B.9d)

r2f + r2s
c2s
a2

= 1 (B.9e)

B.3.2 Left Eigenvectors

The systems satisfies L = R−1, where

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lc

L+
f

L−
f

L+
s

Lpseudo

L−
s

L+
A

L−
A

Le

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.10)
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Lc =
1
a2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 − β �u2

2

βux

βuy

βuz

βBt

μ0
tx

βBt

μ0
ty

βBt

μ0
tz

−β

βHe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, L±
f = 1

2c2f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rfβ
�u2

2
∓ rfuncf ± rssBbnut

−rfβux ± rfcfnx ∓ rssBtx

−rfβuy ± rfcfny ∓ rssBty

−rfβuz ± rfcfnz ∓ rssBtz

−rfβ
Bt

μ0
tx + rs

√
ρ
μ0
cf tx

−rfβ
Bt

μ0
ty + rs

√
ρ
μ0
cf ty

−rfβ
Bt

μ0
tz + rs

√
ρ
μ0
cf tz

βrf

−βrfHe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

L±
A = 1

2
√
ρ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−us

sx

sy

sz

∓sB
√

ρ
μ0
sx

∓sB
√

ρ
μ0
sy

∓sB
√

ρ
μ0
sz

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

, L±
s = 1

2a2

⎛
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,
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Le =
1
a2

⎛
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T

B.3.3 Riemann ‘Jump’ conditions

The ‘jump’ conditions satisfy α̃ = L ·ΔQ and is defined,

α̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α̃c

α̃+
f

α̃−
f

α̃+
s

α̃−
s

α̃+
A

α̃−
A

α̃e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.11)

where,

α̃c =

(
1− β

	u2

2a2

)
Δρ+

β	u

a2
Δ(ρ	u) + β

Bt

a2
ΔBt − β

a2
ΔE∗ (B.12a)
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or... α̃c = Δρ− ΔP

a2

α̃±
f =

rf
2c2f

[ΔP ± ρcfΔun] + rs

√
ρ

2cf

[
ΔBt ∓ sB

√
ρ
bn
cf
Δut

]
(B.12b)

α̃±
s =

rs
2a2

[ΔP ± ρcsΔun]− rf

√
ρ

2cf

[
ΔBt ∓ sB

√
ρ
cf
a
Δut

]
(B.12c)

α̃±
A =

1

2
[
√
ρΔus ∓ sBΔBs] (B.12d)

α̃e = Δŝe − Ee

ρ

ΔP

a2
(B.12e)
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APPENDIX C

MHD Divergence Cleaning for General

Coordinate Systems

The pseudo electric field is defines as Ω = u × B. From Maxwell’s Equations the

temporal evolution can be described by

∂B

∂t
= −∇× Ω (C.1)

For a cartesian coordinate system with x, y, and z dependants ∂B
∂t

is described as:

∂Bx

∂t
= ∂

∂y
Ωz − ∂

∂z
Ωy

∂By

∂t
= ∂

∂z
Ωx − ∂

∂x
Ωz

∂Bz

∂t
= ∂

∂x
Ωy − ∂

∂y
Ωx

(C.2)

For a coordinate system with a r − z dependants ∂B
∂t

is described as:

∂Br

∂t
= −1

r
∂
∂z
(rΩθ)

∂Bz

∂t
= 1

r
∂
∂r
(rΩθ)

∂Bθ

∂t
= − ∂

∂r
Ωz +

∂
∂z
Ωr

(C.3)

For a coordinate system with a r − θ dependants ∂B
∂t

is described as:

∂Br

∂t
= 1

r
∂
∂θ
Ωz

∂Bz

∂t
= −1

r
∂
∂θ
Ωr +

1
r

∂
∂r
(rΩθ)

∂Bθ

∂t
= − ∂

∂r
Ωz

(C.4)
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APPENDIX D

Jacobians and Transforms

D.1 Chemical Jacobian

We first start out with the model ordinary differential equation for the kinetics:

dQ

dt
= Ω̇ (D.1)

where

Q =

⎛
⎝ ns

E

⎞
⎠ Ω̇ =

⎛
⎝ ω̇s

ω̇E

⎞
⎠ (D.2)

ns is the number density of the sth species, and ω̇s and ω̇E are the species and

energy production terms, respectively. The number density, ns, was used in lieu

of mass density, ρs, out of convience and can be easily transformed, ∂ρl
∂nk

= Mkδkl.

The implicit 1st order numerical formulation of Equation D.1 is carried out with the

following steps:
ΔQ
Δt

= Ω̇n+1

ΔQ
Δt

= Ω̇n + ∂Ω̇
∂t
Δt

ΔQ
Δt

= Ω̇n + ∂Ω̇
∂Q

ΔQ
Δt

Δt

ΔQ
Δt

= Ω̇n + ∂Ω̇
∂Q

ΔQ(
I− ∂Ω̇

∂Q
Δt
)
ΔQ = Ω̇nΔt

ΔQ =
(
I− ∂Ω̇

∂Q
Δt
)−1

Ω̇nΔt

(D.3)
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D.2 Chemical Jacobian(∂Ω̇∂Q) Derivation

∂ω̇s

∂nk

=
∑
r

νrs
ν ′
rk

nk

∏
j

n
ν′rj
j (D.4)

∂ω̇s

∂E
=

∂ω̇s

∂T

∂T

∂E
=

∂ω̇s

∂T

1

Cv

∂ω̇s

∂T
=
∑
r

νrs
dkr
dT

∏
n
ν′rk
k

∂kr
∂T

=
ηr
T
ArT

ηrexp

(−θr
T

)
+

θr
T 2

ArT
ηrexp

(−θr
T

)

∂kr
∂T

=

(
ηr
T

+
θr
T 2

)
kr

∂ω̇s

∂E
=

1

Cv

∑
r

νrs

(
ηr
T

+
θr
T 2

)
kr
∏

n
ν′rk
k (D.5)

ω̇E =
∑
s

ωse0s =
∑
s

e0s
∑
r

νrskr
∏
k

n
ν′rk
k

∂ω̇E

∂nk

=
∑
s

∂ω̇s

∂nk

e0s (D.6)

∂ω̇E

∂E
=
∑
s

∂ω̇s

∂E
e0s (D.7)
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APPENDIX E

Steady State Detonation

We will first begin with our model equation with the steady state approximation:

�
�
���
0

∂Q

∂t
+

∂F

∂x
= Ω̇ (E.1a)

A
∂Q

∂x
= Ω̇ (E.1b)

∂Q

∂x
= A−1Ω̇ (E.1c)

From Equation E.1c, the explicit space-marching formulation is defined as:

ΔQ

Δx
= A−1Ω̇i (E.2)

The implicit space-marching formulation is also defined,

ΔQ

Δx
= A−1Ω̇i+1 (E.3a)

ΔQ

Δx
= A−1

(
Ω̇i +

∂Ω̇

∂Q
ΔQ

)
(E.3b)

ΔQ

Δx
−A−1 ∂Ω̇

∂Q
ΔQ = A−1Ω̇i (E.3c)

Now by solving for ΔQ the final form is expressed as:

ΔQ =

(
A−Δx

∂Ω̇

∂Q

)−1

Ω̇iΔx (E.4)
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APPENDIX F

Iterative & Direct Solvers

F.1 Thomas’ Algorithm

The triadiagonal matrix algorithm, commonly refered to as Thomas’ algorithm, is a

simplified form of Gaussian elimination used to solve triadiagonal system of equation.

These systems of equations take on the following form:

aixi−1 + bixi + cixi+1 = di (F.1)

where a0 = 0 and cN = 0. And represented in the matrix form as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0

a2 b2 c2

a3 b3 .

. . cN−1

0 aN bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

·
·
xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

·
·
dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(F.2)

Just as in Gaussian elimination, Thomas’ algorithm consist of a forward elimination

and backward substitution to solve the system as follows:

Forward Elimination
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for k = 2 loop through N

m = ak
bk−1

bk = bk −mck−1

dk = dk −mdk−1

Backward Substitution

xN =
dN
bN

for k = N − 1 loop through 1

xk =
dk − ckxk+1

bk

This algorithm is applicable for diagonally dominant matrices, where

|bi| > |ai|+ |ci| i ∈ 1, ..., N (F.3)

F.2 Black-Red Gauss-Seidel

Gauss-Seidel is an iterative method used to solve problems of the general form:

U = f(	U) (F.4)

If one were to solve this equation explicitly, it would simply take the form,

Un+1 = f(	Un) (F.5)

If 	U is the spatially distribution of U, Equation F.4 can be solved implicitly using

Gauss-Seidel. In this procedure, one would begin with an initial solution at t = tn+1,

U(s), where s=0 initially. The solution at U(s) is used to determine U(s+1) until

convergence which is as follows:
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U
(s+1)
i,j = f(	U(s))

error = max ||U(s+1)
i,j −U

(s)
i,j ||

continue until ...

error < ε → Un+1 = U(s+1) (convergence!)

(F.6)

Using this procedure, the update solution, U(s+1), is solved for using the latest solu-

tion. In order to speed up this process, instead of sweeping through all of the cells

(i & j for 2D), one can first sweep though and solve for the computational grid cells

colored red in Figure F.1, then using the updated solutions, U
(s+1)
red , sweep through

and solve for the black grid cells, U
(s+1)
black . The procedure would be as follows:

U
(s+1)
red = f(	U

(s)
black)

U
(s+1)
black = f(	U

(s+1)
red )

error = max ||U(s+1)
i,j −U

(s)
i,j ||

continue until ...

error < ε → Un+1 = U(s+1) (convergence!)

(F.7)

The procedure shown above is refered to as Red-Black Gauss-Seidel.
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i=0 i=1 . . .

j=0

j=1

...

Figure F.1: Computational domain split into red and black computational cells.
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APPENDIX G

Message Passing Interface (MPI) Implementation

G.1 Grid Connectivity

A three dimensional computational domain can be broken up into rectangular cuboid

subdomains; each containing 6 rectangular faces. A face can connect with one or more

faces from adjacent domain(s), which is illustrated in Figure G.1. This illustration

also shows that domain p0 is connected with 2 domains(p1 & p2), domain p1 is

connected with 3 domains(p1,p2,p3), and domain p3 is connected with 2 domains (p1

& p2). The red numbers in the figure represent unique domain-to-domain connection

of which there are 5. Domains p0 & p2 of Figure G.1 are illustrated with there

associated ghost layers iin Figure G.2. For this connection, labeled 1 in Figure G.1,

p0 would pass information of its interior cells to the ghost layer of p1 and p1 would in

turn information of its interior to p2. This example shows that for each connection,

there are two receive buffers required, which will be refered to as memory windows

without explanation for the moment. From the 5 connections in Figure G.1, a list of

10 memory windows and its associated domains are created in Table G.1.
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p0 p1

p2 p3

Ω 1

2

3

4

5

Figure G.1: The computational domain, Ω is decomposes into 4 subdomains.

p0 p2

Figure G.2: Domain-to-domain connection example where the red shaded area is a

p0 ghost to p2 physical window and the grey shaded area is a p2 ghost to p0 physical

window.

window 0 1 2 3 4 5 6 7 8 9

local 0 2 0 1 2 1 2 3 3 1

remote 2 0 1 0 1 2 3 2 1 3

Table G.1: Generic memory window list generated from Figure G.1 domain connec-

tions where ‘local’ is the domain sending its physical cell data to the ghost cell of

the ‘remote’ domain.
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